The use of Big Data in business strategy

SCHOOL OF ECONOMICS, BUSINESS ADMINISTRATION & LEGAL STUDIES
A thesis submitted for the degree of
Master of Science (MSc) in Management

January 2018
Thessaloniki – Greece

Student Name: Anna Psaropoulou
SID: 1102150019
Supervisor: Prof. Alexakis Christos
Abstract

Big Data is an immense amount of data which requires new advancements and designs, so it becomes conceivable to extricate an incentive from it by catching and analysing process. Big Data because of its different properties like volume, velocity and variety set forward many challenges. Since Big Data is a current up and coming innovation in the market which can convey enormous advantages to the business associations, it becomes noticeably essential that different challenges and issues related in conveying and adjusting to this technology are brought into light.

It is imperative for small medium-sized and global companies to make daily the long journey in the world of big data, if they want to be effective. The implementation of Big Data and analytics is a big project for companies. It is time consuming to collect data and create the right skills, that lead strategy of companies in the correct path. The combination of big data and the experience of corporate executives leads to strategic profitable decisions, while reducing costs. In this dissertation, i am going to present a retrospective of the history of the big data, the technology alongside its significance in the modern world and existing activities, which are viable and essential in changing the idea of science into big science and society, too. The procedures, challenges and issues in adjusting and tolerating Big data technology, their application through examples and surveys from global companies and associations.

Key words and phrases: companies, big data, strategic decisions, analytics, effective.
Preface

This is a dissertation about Big Data technology-innovation (and how useful this is in the strategy of a company), which has been written to fulfill the graduation requirements of the MSc in Management at the International Hellenic University (IHU). I was engaged in researching and writing this dissertation from August 2017 to January 2018.

My dissertation was formulated together with my supervisor, Prof. Alexakis Christos. The conditions were difficult, as soon as I left the University in August; I moved in Athens looking methodically for a job, so that I could dynamically advance my career, through the opportunity given to me with this postgraduate degree. An elaborate psychological and economic process. A goal that few days ago I achieved. Fortunately, Prof. Alexakis Christos was always available and willing to answer my queries. I would like to thank my supervisor Prof. Alexakis Christos for his help, his excellent guidance, support, education and advice both during teaching hours and this process treatment. In addition to, I would like to express special thanks to all my professors and university staff; for understanding the difficult circumstances through the past few months, giving me the extension about the delivery of my dissertation.

To my fellow students at IHU: I would like to thank you for your wonderful cooperation as well. It was always helpful to derive ideas about my research, to learn from you and discover aspects of myself that I did not know until now. I also benefitted from debating issues with my friends, family, colleagues and managers from my previous company. If I ever lost interest, you kept me motivated. My parents, relatives and brother deserve a particular note of thanks: your wise counsel and kind words have, as always, served me well.

I hope you enjoy your reading.

Anna Psaropoulou
Thessaloniki, January 2018
Contents

ABSTRACT ... II

PREFACE ... I

CONTENTS ... III

INTRODUCTION ... 1

BIG DATA: WHAT, WHEN AND THEIR STORY ... 3

- The Digitization of Organizations .. 5
- What is new here? "Isn't 'big data' one more method for saying 'analytics'?" 6
- Big Data Analytics Tools .. 8

NEW TECHNIQUES AND APPROACHES TRANSFORM INSIGHTS INTO ACTIONS 10

BIG DATA CHALLENGES AND ISSUES ... 12

- A. Privacy and Security .. 12
- B. Data Access and Sharing of Information .. 12
- C. Storage and Processing Issues .. 13
- D. Analytical Challenges .. 14
- E. Skill Requirement .. 14
- F. Technical Challenges .. 14
- Terms and Policies - Ethics .. 16

EXAMPLES MAKE IT CLEAR .. 18

- The case of Walmart .. 21

BIG DATA VALUE: WHAT'S IN IT FOR MY COMPANY? .. 25

- The Criteria of Big Data Implementations: .. 25
- Experience or Big Data? A survey by PWC. .. 26
- The Balance Between Experience and Analytics on Decision-Making .. 27

SHOW ME THE MONEY .. 28

- Are Big Data and Analytics Worth the Huge Venture of Money, Resources, and Time for Cooperation and Their Leadership? .. 30
WHAT DOES THE FUTURE HOLD? ..33

CONCLUSIONS ...35

WISE QUOTES AND PREDICTIONS ...36

BIBLIOGRAPHY ...39
Introduction

For the past decade, technology is the key for creating right conditions for financial advancement and furthermore to promote competition in different parts of an economy. Technological advancements, in any case, and the parallel changes in social and everyday life directed through the implementation of innovations. Big Data is one of them. The “oil” for the companies that fight to stand in this world of economical anomalies.

Big Data represents the Information assets described by such a High Volume, Velocity and Variety to require. Technology and Analytical Methods for its change into Value. Smartest organizations are as of now capitalizing on increased information richness and analytics to gain competitive advantage. This information was utilized principally to monitor operations or forecast needs. Both the sources and volume of data gathered have exploded.

Big Data is big business and is a key-leader in strategic path. The relationship between performance and analytics driven management has critical implications to organizations, regardless of whether they are looking for development, effectiveness or competitive differentiation. Analysing the market and the corporations using Big Data, is an essential first step to reach the goal of comprehending and anticipating strategic moves. Realizing what happened and why it happened are never again sufficient. Organizations need to comprehend what is going on now, what is probably going to occur next and what moves ought to be made to get the ideal outcomes.

Associations which manage implementation of Big Data for real-time business solutions, are going to have better results than those that follow the old-school path of techniques. Big Data deliver a competitive advantage and disadvantage correspondingly.

Through this dissertation we are going to answer in some questions such as:

❖ Big Data Value: What’s in it for my company?
❖ Are big data and analytics worth the huge venture of money, resources, and time for cooperation and their leadership?
❖ How big is Big Data today, and how big will it be in the next years?
How the smartest organizations are embedding analytics to transform information into insight and then action?

The first chapter presents the history of Big Data, sources, tools, consisting and sectors of their implementation.

The second chapter includes the techniques, which are used to transform insights into action (income) and the benefits for the companies.

Furthermore, to the third chapter there is a description of the challenge and issues, that associations need to focus; such as (privacy, ethics, security, storage of database etc).

To the next and fourth chapter there are some examples that make Big Data more comprehensive.

Moreover, in the fifth chapter, after the advantages, issues and challenges that have been examined there is a crucial question to be answered about the practical-strategic use of Big Data in business world. Also, the contrast of experience and analytics in the right decision-making.

The sixth chapter includes an important survey of Deloitte about the advantage that analytics and Big Data provides.

The seventh chapter comprises the conclusion, of the dissertation and recommendations for further research and use of this big innovation.

In the last chapter are given some quotes about the world of Big Data.
Big Data: What, when and their story

The term intelligence has been utilized by analysts in artificial intelligence since the 1950s. Business intelligence turned into a popular term in the business and IT communities just in the 1990s. In the late 2000s, business analytics were acquainted with speak to the key analytical segment in BI (Davenport 2006). More recently big data and big data analytics have been utilized to depict the data collections and analytical procedures in applications that are so expansive (from terabytes to exabytes) and complex (from sensor to web-based social networking data) that they require progressed and unique data storage, management, analysis, and representation advancements. In this article we utilize business knowledge and analytics (BI&A) as a bound together term and regard big data analytics as a related field that offers new bearings for BI&A research.

Since the mid-2000s, the Internet and the Web started to offer unique data accumulation and scientific innovative opportunities. The HTTP-based Web 1.0 systems, portrayed by Web search engines, for example, Google and Yahoo and web based business organizations, such as, Amazon and eBay, enable associations to display their businesses online and connect with their customers straightforwardly. In addition to porting their conventional RDBMS-based product data and business substance online, itemized and IP-particular user search and association logs that are gathered consistently through cookies and server logs have turned into another gold dig for understanding customers' needs and distinguishing new business openings. Web intelligence, web analytics, and the user-created content gathered through Web 2.0-based social and group sourcing systems (Doan et al. 2011; O'Reilly 2005) have introduced another and energizing period of BI&A 2.0 research in the 2000s, focused on content and web analysis for unstructured web contents.¹

Big Data is informational indexes that are so voluminous and complex that customary information preparing application software are lacking to manage them. Big Data challenges incorporate catching data, data storage, data analysis, search, sharing, transfer, representation, questioning, updating and data security. Big Data theory includes two basic kinds of data; structured and unstructured. The inception is on unstructured data. The bulk of the content is dozens of terabytes that leads to petabytes of gathered data, starting at 2012. The management of such a large volume of data needs special handling to come to fruition of insights to knowledge.2

The opportunities related with data and analysis in various associations have created noteworthy enthusiasm for BI&A, which is frequently alluded to as the strategies, technologies, systems, practices, procedures, and applications that analyse basic business data to enable an endeavour to better comprehend its business and market and settle on auspicious business decisions. As a data driven approach, BI&A has its foundations in the longstanding database management field. The BI&A technologies and applications currently received in industry can be considered as BI&A 1.0, where data are generally organized, gathered by organizations through different inheritance systems, and regularly stored in business social database management systems (RDBMS).

Data sets develop quickly - partially on the grounds that they are progressively accumulated by cheap and various data detecting Internet of things gadgets, for example, cell phones, aerial (remote sensing), programming logs, cameras, microphones, radio-recurrence recognizable proof (RFID) readers and wireless sensor systems. New technologies are gathering more data than any time in recent memory, yet numerous associations are still searching for better approaches to get value from their data and contend in the marketplace. Their inquiries concerning how best to accomplish value persevere. Recognizing what happened and why it happened are not any more sufficient. Associations need to comprehend what is happening now, what is

probably going to occur next and what moves should be taken to get the ideal outcomes.\(^3\)

![Big Data Analytics](http://targetrichsolutions.com/left-brain/big-data-predictive-analytics/)

The digitization of organizations

There are organizations that have just digitized their purport through Big Data or in the previous years. In any case the latest years have begun to redeem their results, as it takes years to gather and process the data. Such organizations are the mass media, healthcare, life sciences, transportation, retail, logistics and utilities.\(^4\)

Hal Varian, Chief Economist at Google and emeritus educator at the University of California, Berkeley, remarked on the developing opportunities for IT experts and students in data analysis as follows: “So, what's getting pervasive and cheap? Data. Also, what is reciprocal to data? Analysis. So, my suggestion is to take heaps of courses about how to manipulate and analyze data: databases, econometrics, measurements, statistics, etc”s.

Web is the easy way to gather information about customers, products and organizations. Next step is analyzing these information logs and needs of your

\(^3\) Wikipedia

\(^4\) *Big Data: What It Is and Why You Should Care. USA: IDC*

\(^5\) https://whatsthebigdata.com/2016/09/06/hal-varian-on-intelligent-technology/
customers. Through web analytics tools (Google analytics), for instance, companies can spot the logs that a customer makes repeatedly and uncover their buying patterns. This leads to product proposals through ads and to a possible purchase. In 2004 the creation of Web 2.0 applications made a plenitude of user produced content from different online social networking, for example, forums, web blogs, social communication sites, social sight and sound locales (for photographs and videos), and even virtual worlds and social games (O'Reilly 2005). Notwithstanding catching superstar jabber, references to regular occasions, and socio-political assumptions communicated in these media, Web 2.0 applications can effectively assemble an expansive volume of opportune criticism and feedback from an assorted customer population for various sorts of organizations.

Many marketing researchers trust that online social media analytics exhibits a remarkable opportunity for organizations to regard the market as a "discussion" amongst organizations and customers rather than the conventional business-to-customer (B2C), one-way "marketing" (Lusch et al. 2010). Aside from essential question and pursuit capacities that future BI&A 2.0 systems will need, no propelled content analytics for unstructured text are currently considered in the 13 abilities of the Gartner BI platforms. A few, in any case, are recorded in the Gartner BI Hype Cycle, including data semantic services, regular dialect question answering, and content/text analytics (Bitterer 2011). New IS and CS courses in content mining and web mining have risen to address required technical training.

What is new here? "Isn't 'big data' one more method for saying 'analytics'?"

It is true that they are connected. The big data development, as analysts before it, tries to gather intelligence from data and make an interpretation of that into business advantage. There are three key contrasts (3Vs):

Volume: Starting at 2012, around 2.5 exabytes of data are created every day, and that number is multiplying at regular intervals or somewhere in the vicinity (every 40 months). A greater number of data cross the web each second than were stored in the whole web only 20 years prior. This gives organizations a chance to work with numerous petabytes of data in a solitary data index—and not simply from the web. For instance, it is evaluated that Walmart gathers more than 2.5 petabytes of data consistently from its customer exchanges. A petabyte is one quadrillion bytes, or what might as well be called around 20 million file organizers of text. An exabyte is 1,000 times that sum, or one billion gigabytes.

Velocity: For some applications, the speed of data creation is much more essential than the volume. Real-time or about continuous data makes it feasible for an organization to be significantly more light-footed than its competitors. A good example is the case of Alex "Sandy" Pentland and his group that they gathered the data of mobiles in the area of Macy’s parking in Black Friday. They forecasted the number of customers that would visit the
store in Christmas days, which followed Black Friday "season". This kind of quick insights give competitive advantage to managers.

Variety: Big data appears as messages, updates, and pictures presented on social media; readings from sensors; GPS signals from mobile phones, and that's only the tip of the iceberg. A significant number of the most imperative sources of big data are generally new. The tremendous amount of data from social media, for instance, are just as old as social media themselves (Facebook-2004, Twitter-2006). This includes gadgets and cell phones, too; that give out data attached to areas, people and their activities.

As I wrote above there are some devices and applications that are sources of gathering data (GPS, social media etc) and help organizations customary operations. The data are usually at first unstructured and a little bit of confusion, basically holding up to be discharged. Analytics conveyed thorough methods to decision making; big data is on the double more straightforward and more intense. As Google's director of research, Peter Norvig, puts it: "We don't have better algorithms. We simply have more data."

![Figure 1. BI&A Overview: Evolution, Applications, and Emerging Research](image)

Picture 3: (Source_MIS Quarterly; Business Intelligence and Analytics: From Big Data to Big Impact)

Big data analytics tools

Fundamentally, big data analytics tools are programming products that help prescript and prescriptive analytics applications running on big data computing

platforms - commonly, parallel processing systems in light of groups of product servers, versatile dispersed storage and technologies, for example, Hadoop and NoSQL databases. The tools are intended to empower users to quickly analyse a huge amount of data, regularly inside a real-time window.

Also, big data analytics tools give the structure to utilizing data mining strategies to analyse data, find patterns, propose analytical models to perceive and respond to distinguished patterns, and after that upgrade the performance of business processes by implanting the analytical models inside the comparing operational applications. For instance, huge amounts of transportation conveyance data, gushing traffic data, spilling weather data and verifiable merchant performance data can be analysed to devise a model for ideal choice of transportation subcontractors inside geographic districts to confine the risks of late delivery or damaged products.

The right criteria of the tools:

- The analytics algorithms and models they deliver are refined.
- They constantly running on big data hardware platforms, (e.g Hadoop).
- The structured and unstructured data they use are from huge number sources.
Their implementation procedure is stored into analytical models, which can be attached with representation and introduction tools.

New Techniques and Approaches Transform Insights into Actions

In the first chapter, we have a retrospective of history and composition of Big Data and analytics; their use, tools and methods.

New procedures to install insights will pick up in value by generating results about that can be promptly comprehended and followed up on:

- Dashboards that now reflect genuine last-quarter sales will likewise demonstrate what sales could be next quarter under a wide range of conditions: another media blend, a value change, a bigger sales group, even a noteworthy climate or sport event.

- Simulations assessing elective situations will automatically suggest ideal methodologies —, for example, the best media blend to acquaint a product with a segment, or the perfect number of sales experts to allot to a specific new territory.

- Use cases will outline how to insert insights into business applications and procedures. New strategies will likewise settle on it feasible for managers even more completely to see their customers’ purchases, instalments and interactions. Companies will have the capacity to listen to customers’ interesting needs and wants about channel and product inclinations. Truth be told, influencing customers, and additionally data, to wake up inside complex authoritative systems may well turn into the greatest advantage of making data-driven insights of knowledge genuine to the people who need to use them.

At the point when executives initially understand their requirement for analytics, they tend to swing to those closest to them for answers. After some time, these purpose of-require assets meet up in local line of business units to empower sharing of insights. At last, unified units rise to bring a mutual enterprise viewpoint — administration, tools, strategies — and specialized expertise.
As executives utilize analytics more often to advise everyday choices and actions, this expanding interest for insights keeps assets at each level drew in, growing analytic abilities even as activities are moved for efficiencies. Demonstrating and visualization devices, as noted, will soon give more noteworthy business esteem than ever before. In any case, that does not imply that spreadsheets and diagrams ought to leave.

Influence Analytics To pay Off It takes enormous plans took after by discrete activities to pick up the advantages of analytics.

Be that as it may, it additionally adopts some management strategies. Each of our suggestions meets three basic management needs: ■ Reduced time to esteem ■ Increased probability of change that is both significant and continuing ■ Greater concentrate on achievable strides to begin on the speediest way to esteem, keep everybody concentrated on the huge business issues and select the difficulties that you know analytics can comprehend today — inside a motivation for the future. Expand on the abilities you know you as of now have. What is more, dependably continue squeezing to install the insights you have gained into business operations.

In the world of Big Data customers are active members in the marketplace that shows the use of social networks and their preferences, which is a gold mine for manufacturers, managers, retailers and all kind of companies. It is a fact that, their goods or services meet better chances.

The latest social media sources are Facebook, Instagram and Twitter. Every day even more companies take advantage of these sources -through e.g likes, reviews, locations) that help them increase their income and their respond to the customers’ needs.

By definition, the rate of Big Data development surpasses the abilities of customary IT frameworks and represents to a great extent "greenfield" processing and data management issues for customers. Secluded sending of servers at hyperscale is frequently the preferred way to deal with the economic challenges related with Big Data. For instance, Facebook as of late declared its

Open Compute Project for both data-center outline and server design. By sharing its server outline with the market, Facebook would like to drive down the cost and unpredictability of hyperscale server arrangements went for workloads, such as, Big Data analytics.⁹

BIG DATA CHALLENGES AND ISSUES

Because of getting insights to actions and increase the income of companies, there are some challenges and issues need to deal with.

A. Privacy and Security

It is the most vital issue with Big Data which is sensitive, incorporates reasonable, technical and legitimate essentialness. x The personal data of a person when joined with outside extensive data sets prompts the deduction of new certainties about that person and it’s conceivable that these sorts of facts about the person are cryptic and the person might not need the Data Owner to know or any person to think about them. x Information with respect to the customers is gathered and utilized as a part of request to increase the value of the matter of the company. This is finished by making insights in their lives which they are ignorant of. x Another imperative outcome emerging would be social stratification where an educated person would take focal points of the Big Data prescient analysis and then again underprivileged will be effortlessly recognized and treated more terrible. x Big Data utilized by law implementation will expand the odds of certain tagged people to experience the ill effects of unfriendly outcomes without the capacity to fight back or notwithstanding having knowledge that they are being separated.

B. Data Access and Sharing of Information

If data is to be utilized to set aside a few minutes it winds up noticeably vital that it ought to be accessible in precise, complete and timely way. This makes

the Data management and administration process bit complex adding the need to influence Data to open and make it accessible to government organisations in institutionalized way with institutionalized APIs, metadata and arrangements therefore prompting better decision making, business intelligence and efficiency enhancements. Expecting sharing of data between companies is clumsy due to the need to get an edge in business. Sharing data about their customers and operations undermines the way of life of mystery and competitiveness.

C. Storage and Processing Issues

The storage accessible is not sufficient for storing the vast measure of data which is being created by nearly everything: Social Media sites are themselves an extraordinary patron alongside the sensor gadgets and so on. As a result of the thorough requests of the Big Data on networks, storage and servers outsourcing the data to cloud may appear a choice. Transferring this extensive measure of data in cloud does not take care of the issue. Since Big Data insights require getting all of the data gathered and after that connecting it in an approach to extricate imperative data. Terabytes of data will set aside extensive measure of opportunity to get transferred in cloud and in addition this data is changing so quickly which will make these difficult to be transferred continuously. In the meantime, the cloud’s circulated nature is additionally dangerous for Big Data analysis.

Along these lines the cloud issues with Big Data can be arranged into capacity and performance issues. The transportation of data from capacity point to handling point can be maintained a strategic distance from in two ways. One is to process in the capacity put just and results can be exchanged or transport just that data to calculation which is imperative. In any case, both these strategies would require honesty and provenance of information to be kept up. Handling of such huge measure of data additionally takes substantial measure of time. To discover appropriate components entire of data collection should be scanned which is to some degree impractical. Thus, building up files
right at the outset while gathering and storing the data is a decent practice and decreases preparing time impressively.

D. Analytical challenges

The main challenging questions areas:

- What if data volume gets so vast and differed and it isn't known how to manage it?
- Does all data should be stored?
- Does all data should be analysed?
- How to discover which data focuses are extremely imperative?
- How can the data be utilized to best favourable position?

Big Data carries alongside it some colossal expository challenges. The sort of analysis to be done on this gigantic measure of data which can be unstructured, semi structured or structured requires an extensive number of propel skills. Also, the kind of analysis which is should have been done on the data depends highly on the results to be gotten i.e. decision making. This should be possible by utilizing one utilizing two procedures: either consolidate monstrous data volumes in analysis or decide forthright which Big data is applicable.

E. Skill Requirement

Since Big data is at its childhood and a developing innovation so it needs to draw in organisations and youth with differing new ranges of skills. These skills ought not be constrained to specialized ones but rather likewise should stretch out to research, analytical, interpretive and innovative ones. These skills should be produced in people thus requires training programs to be held by the organisations. In addition, the Universities need to acquaint educational modules on Big data with deliver talented employees in this skill.

F. Technical Challenges

1) **Fault Tolerance:** With the approaching of new technologies like Cloud computing and Big data it is constantly planned that at whatever point the disappointment happens the harm done should be inside worthy edge as opposed to starting the entire undertaking from the scratch. Blame tolerant computing is to a great degree hard, including complex algorithms. It is
essentially impractical to devise completely fool-proof, 100% solid blame tolerant machines or software. Therefore, the fundamental assignment is to decrease the likelihood of inability to a "acceptable" level. Shockingly, the more we endeavour to diminish this probability, the higher the cost.

Two strategies which appear to build the adaptation to internal failure in Big data are as: First is to separate the entire computation being done into tasks and dole out these errands to various hubs for computation. One hub is allocated crafted by watching that these hubs are working appropriately. On the off chance that something happens that specific errand is restarted. In any case, once in a while it's very conceivable that that the entire computation cannot be separated into such free tasks.

There could be a few tasks which may be recursive in nature and the contribution of the past task is the contribution to the following computation. Subsequently restarting the entire computation ends up noticeably lumbering procedure. This can be kept away from by applying checkpoints which keeps the condition of the system at specific interims of the time. In the event of any failure, the computation can restart from last checkpoint kept up.

2) Scalability: The processor innovation has changed in recent years. The clock speeds have slowed down and processors have been processed with many centers. The adaptability issue of Big Data has led to distributed computing, which now share the procession of work. This brings loss of money and time; especially because it requires the failure of managing system efficiently in huge quantity.

Because of these problems there has been a huge move in the advancements. Drives and Phase Change technology has supplanted the Hard Disk Drives (HDD), which have a different execution in data exchange. After that the issue about data storage is intense.

3) Data Quality: When as many number of data is used that brings better results in the decision-making, the collection and the storage of numerous data meets some problems. Managers need a huge number of data storage, but IT managers before the storage will examine every aspect of the data. Big Data fundamentally concentrates on quality information storage as opposed to
having big unessential data so better outcomes and conclusions can be drawn. This further prompt different inquiries like how it can be guaranteed what data is important, how much data would be sufficient for decision making and whether the stored data is exact or not to make inferences from it and so on.

4) Heterogeneous Data: Unstructured data represents to practically every sort of data being created like social media interactions, to recorded gatherings, to treatment of PDF documents, fax exchanges, to e-mails and more. Structured data is constantly composed into profoundly automated and manageable way. It demonstrates well mix with database, yet unstructured data is totally crude and chaotic. Working with unstructured data is awkward and obviously costly as well. Converting over this unstructured data into organized one is likewise not attainable. Structured data is the one which is sorted out in a way with the goal that it can be managed effortlessly. Burrowing through unstructured information is bulky and expensive.10

Terms and Policies - Ethics

Each company give users power over their data after telling the customers everything that it keeps records of, allow the customers to choose what they wish to share and settle on that tool or decision simple. In an article on Big Data Ethics Jeffrey F. Rayport proposes that "One approach to stay away from an Orwellian nightmare is to allow users to make sense of for themselves what level of security they truly need." This ties into the primary point in that a straightforward and succinct clarification and set of apparatuses keeps users from being astonished and outraged. Take for instance the gaming store who, in 2010, added a statement to their Terms of Service that conceded the company responsibility for customer’s unceasing soul. As diverting as that case may be, it features a typical issue, the pattern of long and complex privacy agreements. Regardless of whether an individual gives up his or her rights through a type of documentation, if the report conceding those rights is unpredictable or obscure with the end goal that it is hard for a common person

to comprehend, the proprietor of that record will without a doubt go under exceptional examination for their activities. In any case, a basic and uncomplicated agreement will, in any event, pass the fault of ignorance from the company being referred to the customer who neglected to peruse the 3-line depiction in the privacy settings page. By and large a straightforward agreement completely abstains from actuating the outrage of customers and the public alike.

The importance of Security, while not straightforwardly identified with Big Data, is an imperative part of the related ethics. An architect needs to painstakingly characterize what person or private data is fundamental (rather than wanted), and how that may struggle with the interests of the proprietors of that data. Once an architect has determined what data an application needs, it is vital that he or she work in security around that data. Regularly the data collected is significant, and the company lost that data that will assume the fault, not those that took it. All things considered it is the moral obligation of a company to secure the data, as well as the surmising that can be made with Big Data, from those who might get it illicitly or without authorization.

What companies have clear policies obvious to any spectator is the variety in policy statements between associations. This by and large produces doubt in associations as an absence of clear or reliable statements persuade that a company is concealing practices. Influencing approaches to clear and uniform makes it simple for an architect to adjust his work with company ethics and makes businesses responsible for their activities (as should be obvious a reasonable picture of what they are or are not giving ceaselessly). Lamentably this is yet a zone that requirements significant work.

Davis and Paterson found that, practically "most of the policies reviewed made some sort of qualification between 'personally distinguishing' and 'anonymized' data. Almost 50% of those, in any case, did not clarify how they characterized the distinction—or precisely what assurances were set up." Defining these parts of utilization is fantastically vital in view of how quickly changes in the capacities of Big Data are evolving. Something that might not be personally distinguishing today might be that way tomorrow, and how a
company has characterized that data may enable it to be utilized for such purposes. How a company characterizes data that is anonymized is essential for a similar reason. Frequently this sort of data is available to use by the company since, at the present time, it cannot be used to distinguish a person. If that data is anonymous because of abilities, and not because there is no real way to connect that data with a person, issues will emerge.11

Examples make it clear

After all these information -to be better comprehensive- I describe in this chapter through examples some cases that show the value of Big Data.

There is no doubt that, big data creates the potential for an extensive variety of business conceivable outcomes and innovations. The most generally known cases begin from the major web organizations for whom data gathering and analysis is a center competency.

Google is another case of a company that finds a way to use Big Data in ways that a great many people find proper and beneficial. A prime example is the spell-checking utility found in Google's web browser, known as Google Chrome. The utility takes incorrect spellings and revisions and records them in a database enabling the support of enhance its general usefulness with use after some time ("What did users frequently type neglecting to discover what they needed with the word "peopple"? Aha, "people."). Google’s content to discourse works in a similar way, recording a user’s discourse to enhance its capacity to perceive words and expressions.

Even though a lot of this data appears to be private, Google takes two critical yet basic (nearly to the point of common sense) steps that assistance ease concerns. To start with, Google dependably asks before it records data in the above conditions. This appears to be something little however it winds up having a huge impact. Numerous substantial associations neglect to consider

the way that there is a huge contrast between surrendering privacy intentionally to help other people, and having it taken from you without your assent or data.

Second, Google advises you of the idea of the data its taking and that it will find a way to make your data anonymous, additionally facilitating worries of consistently people. Last, Google advises users of the advantages their data will provide for themselves or others, enabling them to settle on informed and cognizant choices and giving them point of view on the value of their commitment.¹²

To be better understood, another example is based on a survey of more than 4,000 data innovation (IT) experts from 93 nations and 25 industries, the IBM Tech Trends Report (2011) distinguished business analytics as one of the four major technology innovations in the 2010s. In an overview of the condition of business analytics by Bloomberg Businessweek (2011), 97 percent of companies with revenues surpassing $100 million were found to utilize some type of business analytics. A report by the McKinsey Global Institute (Manyika et al. 2011) anticipated that by 2018, the United States alone will confront a deficiency of 140,000 to 190,000 people with profound analytical skills, and a shortage of 1.5 million data savvy managers with the know-how to analyse big data to settle on effective decisions.

Furthermore, Capital One is a perfect example. In the 1990s, the Visa business used a uniform-valuing model charging each customer a similar cost, except for Capital One. The organization utilized a statistical model in view of public credit and statistic information to furnish customers with "exceptionally custom-made" products. The innovation was one of their foundation improvements in winning 32% CAGR in net revenue (after arrangements) from 1994 to 2003. Thusly, many banks have moved concentration towards Big Data analytics, yet the pioneers appear to have kept up their edge. Their annual net revenue has expanded by 17% contrasted and best banks in the US, for

¹² *Big data: A normal accident waiting to happen? UK: Journal of Business Ethics*
example, Citigroup C - 0.13% at 11%, Bank of America BAC +0.46% at 11% and JP Morgan at 6% from 2009 to 2014.13

Plus, a practical example is about improved airline Etas Minutes matter in airports. So, does exact data about flight arrival times: If a plane lands before the ground staff is prepared for it, the passengers and group crew are adequately caught, and if it lands later, the staff waits for them while other daily routine procedures stay behind; these situations are costly. The U.S airline gathered for a survey that almost 10\% of the evaluated time of the flights had a 10-minute gap and 30\% had a five minute. Another issue was the long-standing routine by pilots (ETAs). The timely and costly routines made life difficult for the airlines. Looking for a solution, the airline swung to PASSUR Aerospace, a provider of decision-support innovations for the aeronautics industry.

In 2001 PASSUR started offering its own arrival assesses as a service called RightETA. It calculated these circumstances by joining publicly accessible data about weather, flight schedules, and different elements with restrictive data the company itself collected, including feeds from a network of uninvolved radar stations it had introduced near airports to accumulate data about each plane in the local sky. PASSUR began with only a couple of these establishments, yet by 2012 it had more than 155. At regular intervals (4.6 seconds) it gathers an extensive variety of data about every plane that it "sees." This yields a tremendous and steady surge of digital data. Additionally, the company keeps all of the data it has assembled after some time, so it has an enormous assortment of multidimensional data traversing over 10 years. This permits complex analysis and example coordinating.

RightETA basically works by asking itself "What happened all the past circumstances that a plane moved toward this airport under these conditions? At the point when did it really arrive?" After switching to RightETA, the airline for all intents and purposes wiped out gaps amongst assessed and genuine arrival times. PASSUR trusts that empowering an airline to know when its planes will land and plan in like manner is justified regardless of a few million

13https://www.forbes.com/sites/peterpham/2015/08/28/the-impacts-of-big-data-that-you-may-not-have-heard-of/#3f87b7626429
dollars per year at every airport. It is a basic formula: Using big data prompts better forecasts, and better predictions yield better decisions.14

The case of Walmart

Picture 5: Walmart’s Annual report 2012 (Source: www.walmart.com)

 _SAN BRUNO, Calif., Aug 30, 2012 _ Walmart today declared a new web search engine for Walmart.com to help many customers to peruse, find and purchase items in a simple, quick and instinctive way. Developed starting from the earliest stage @WalmartLabs, the exploration and technology center for innovation at Walmart, the engine uses semantic hunt innovation to foresee the goal of a customer's search to convey exceedingly pertinent results for them. Walmart.com has just observed an inexact 10-15 percent expansion in customer completing a purchase after searching an item utilizing the new web search engine. Named Polaris, the new web search engine was created by a small group inside @WalmartLabs and completed in ten months. The group

incorporates experts in data recovery, machine learning and text mining with involvement from top search and online business companies and famous research institutions.

During the recent months, Walmart.com has moved the site over to Polaris and it is presently completely controlled by the search engine. Polaris is additionally utilized for mobile search and will extend to control the company's universal internet business sites over the coming months. "Search is a crown gem for any online business company to possess," said Neil Ashe, president and CEO of Walmart Global eCommerce. "The present declaration underscores our responsibility regarding owning innovation that is key in giving our millions of customers anytime, anyplace access to the products they need at most reduced prices."

"With Polaris, we are giving customers the capacity to interface with the products they need yet in addition surface items in light of their interests and likely aim," said Sri Subramaniam, vice president for @WalmartLabs and leader of the Polaris activity. "This is the begin of what we envision search to be as we keep on delivering items to accelerate Walmart's worldwide web based business efforts."

Looking for a shopping result is quite different from directing a general search. Polaris depends on the Social Genome project, a platform that interfaces people to places, occasions and products giving Walmart a wealthier level of comprehension about customers and products. The new web searcher utilizes propelled algorithms including inquiry comprehension and synonym mining to gather customers’ expectation in conveying results. At the point when a customer sorts in "denim," it returns results on pants or "chlorine tablets" returns results identified with pool equipment.
Polaris concentrates on engagement understanding, which considers how a user is carrying on with the site to surface the best results for them. It conveys a new and intuitive result page when perusing for points as opposed to giving a standard rundown of search products enabling customers to find new items they might not have considered (up-sale/cross-sale). At the point when a customer sorts in "patio furniture," they get a vivid page with numerous patio set alternatives for the terrace alongside a flag indicating included things on sale. The @WalmartLabs group keeps on developing Polaris and is chipping away at new advances that will be moved into Walmart.com. It is the most recent innovation from @WalmartLabs.
In the previous years, the group has created Shopycat, a social gift discoverer; Classrooms by Walmart, a program to make back-to-school shopping easier; Get on the Shelf, a crowdsourcing challenge to uncover new products for Walmart; and Social Media Analytics, devices that utilization social prattle to choose items to be conveyed by Walmart.15

15 http://s2.q4cdn.com/056532643/files/doc_financials/2012/Annual/2012-annual-report-for-walmart-stores-inc_130221023846998881.pdf
Big Data Value: What’s in it for my company?

After these major examples of popular companies, there are more to come, and some questions to be answered to understand the importance of Big Data in a company’s evolution.

The criteria of Big Data implementations:

➢ *Do the data that are provided useful?* For example, retailers have systems with their customers' data (gender, age, frequency of footfall) and proceed to marketing moves. These moves of promotion make simpler and easier for the retailers to focus on specific services or products. As a result, they raise their daily income.

➢ *Is the devotion of the data strong?* A good example by IDC was that through remote sensor systems they gathered data about earth science and evaluated them. The procedure about the gathered data was actually a distinguish between false and true data that came from customers or ecological inconsistencies.

➢ *Does reactions are timeless?* An example for this question is that some private human services associations are sending Big Data frameworks that protect extortion of checks from months to days. This action reduces the expenses and time.

➢ *Are Big Data valuable, stable and simple for organizations?* This question includes all the above. It is big case how easy organizations can extract data from smartphones for instance. This kind of system would help forecasting an earthquake or a big environmental disaster in a real time even miles underground. The procedure can take hours to set of course.\(^\text{16}\)

\(^\text{16}\) *Big Data: What It Is and Why You Should Care. USA: IDC*
Experience or Big Data? A survey by PwC.

The big survey by PwC, entitled “Gut & Gigabytes: Capitalizing on the Art and Science in Decision Making”, examines the harmony and strength between top-level management and data analytics, which land at strong strategic decision choices.

Managers must deal with major decisions about their organizations daily. The results emphasized that ¼ of managers follows take major decisions every three months and 43% of them reconsider it. Indeed, 43% of managers or top-level executives reconsider the decisions with the help of Big Data elements.

The only issue about the administration of Big Data on decision-making by managers and bosses (52%) is the lack of knowledge. The repost demonstrated that even if most of the executives consider and depend on their personal feelings, those who use the data (63%) are positive about the changes. Changes
that Big Data bring on the table of strategic plans in their companies. Especially in the future.

The Balance Between Experience and Analytics on Decision-Making

The fact is that the correct evaluation and implementation of data and analytics can help managers follow the best strategy. The combination of managers and big data lead businesses into superior results and this will keep on doing. It helps them to take and follow real-time decisions in a daily base. This points a huge competitive advantage over others. The keys that technology delivers to managers -who have the culture and experience- shows a quicker and better result. In other words, the combination of these two is perfect and ideal. The culture has changed in management. This is the future.

Dan Filippo, PwC's Global and US Data and Analytics Leader stated, "A company's prosperity today is tied to how great it is at settling big decisions. While executives say they keep on relying on experience, counsel, or their own gut intuition, they additionally observe interest in data and analytics as critical to success. Experience and intuition and the use of data and analytics are not totally unrelated. The challenge for business is how best to marry the two. Executives know the right questions to ask. Presently they have to know how to find the right answers from external and internal data they have used in the course over the last two years."

Overseeing big data has never been less demanding—on account of the consistently developing digital technology we have this day and age. Businesses need to know how to legitimately deal with, analyse, encode and store the raw data they have assembled to change over it into profitable data key to their operation. Leave all your big data worries to us and we will address them through our management services, enabling you to concentrate on other vital business matters.17

17https://www.slideshare.net/PWC/the-power-of-analytics-for-better-and-faster-decisions-by-dan-difilippo
Show me the money

In the previous chapter, we examine the huge impact of Big Data for a company's strategy and whether only this plays a role in relation to the managers' experience.

What is more, once this is altogether done, many ponder whether they have extremely revealed all the value their data brings to the table? As a rule, the conditions are not as much as strong. Senior managers may not be enthusiastic about having their intuition supplanted—or if nothing else increased—with analytics. They may basically not comprehend the estimation of an analytics activity. There might contend needs for investment money. Likewise, with some other change program, managers and associations can oppose analytics programs, or possibly not completely underwrite their adoption. Any absence of comprehension of analytics may be intensified, as opposed to mitigated, by the surge of attention about big data. As it happens, most big associations are basically including big data capabilities—appropriated record system technology, open source software, and information researcher skills—to their current analytical capacities.

However, numerous managers are in question about whether they require big data, and what is important to acquire a value from it. On account of big data, what should be accelerating the reception of analytics may really be backing it off. The associations taking part in this wide survey—led through meetings, interviews and online surveys—are at an assortment of positions in their analytical trips. All at this point have at least one adherents among the management team. All have executives who trust that the use of analytics is critical. There are, in any case, many different executives who still should be persuaded. For all intents and purposes, most of the associations surveyed are applying analytics to at least one business processes. In any case, a lot of zones inside these associations stay untouched.
The dominant part of surveyed companies has some type of analytical group, yet the level of analytical development changes among them. The measure of analytics groups inside taking an interest companies ranges from maybe a couple analysts to a few hundred. In a few, the leader of the analytics group is an analyst him or herself; in others, it is a C-suite executive. Much of the time, internal assets are being increased with outer suppliers of services. This study speaks to a guidepost from which a comprehension of analytics can and will push forward. From perceptions over many years, analytical advance is evident: the interest in analytics is significantly more noteworthy, assets are more accessible, and executive comprehension has expanded. On the off chance that—a far-fetched scenario—analytics advance was to stop today, the associations that have handled these activities would be in an ideal situation for having done as such.

More probable, however, as proposed by these survey discoveries, the use of analytics and its significance will increment in the coming years. This implies competitors can even now excel. Industries—from airlines to protection to sports—will quickly duplicate analytics advancements and reconsider them.
once more. The best way to remain in front of the competition will be to put resources into analytical capacities, incorporating analytics into decisions and procedures. As this survey uncovers, while analytics is as of now conveying insights that can control advancement for a few businesses, the best is yet to come\(^\text{18}\) (Thomas H. Davenport Visiting Professor Harvard Business School Independent Senior Adviser to Deloitte Analytics).

Are big data and analytics worth the huge venture of money, resources, and time for cooperation and their leadership?

The right answer is yes, with shifting degrees of enthusiasm relying upon whom you ask inside an association. Understanding that the greater part of survey members looks to analytics to assume some part in driving business strategy, we solicited them to rank the significance from the train in supporting key business capacities—including marketplace analysis, supply chain management, and administrative and risk processes. Of course, the zones in which big data and analytics were observed to be the most critical were those straightforwardly identified with income production or cost control/reduction. "Facts and data are driving a great deal of our investments, since it's about ROI and metrics," clarified a senior risk manager for a business estate management company. "Quantitative analysis empowers us to foresee the future as opposed to reacting after the event. Furthermore, that can tremendously affect our financial performance."

In marketplace-related territories, respondents said that the most imperative utilization of data analytics was in "distinguishing approaches to increase sales" (18 percent), took after nearly by two different areas that—if mastered—can increase sales: "understanding customer behaviour" (17%) and "targeting product and service offerings to specific customers" (17%). Similarly, critical was the utilization of analytics in "distinguishing innovation and investment openings," as recommended by 17% of respondents. Obviously,

most organizations implementing opportunities to help or upgrade their marketing and sales performance are applying the analytics capabilities to various customer-centric activities and procedures. In a few occurrences, this incorporates collecting and analysing tremendous measures of unstructured information produced through websites, call centers, social media, and other consumer-confronting resources.

In one example, the chief operating officer for a fast-growing internet business portrayed "customer analytics" as the most imperative thing his company is doing. Why? Since it empowers the firm to better segment existing and forthcoming customers, taking into account more exact targeting of promoting, valuing, and discount offers. "Our emphasis now is on how we can emphatically change customer behaviour," he said. "We are endeavouring to be an experiential retailer, and that implies widening our product line in specific categories and becoming more analytical about foreseeing what offers will work, and when." Financial operations have for quite some time been data-driven, however the availability of big data and the growth of data analytics capacities have additionally elevated its significance. These are no uncertainty the reasons that the area frequently found to put invest in analytics, at 79%, is finance. Likewise, around 18% of companies surveyed report that the Chief Financial Officer is the person inside the association principally in charge of analytics, making the CFO the third most regular analytics supervisor.

The most successive leader of analytics—named by 23% of respondents—is the "business unit or division head," who likewise typically has noteworthy budgetary obligation. It makes sense that if finance will put invests into analytics, there is ROI to be had. "Today, it’s not the amount more work can (analytics) do inside the company, yet what should we concentrate on that gives us the best ROI," noticed a customer analytics expert for a worldwide technology company. "Our job is to boost ROI." This can mean less however more impactful data analytics projects. CFOs and their teams regularly (at just over than 24%) use data analytics in “forecasting financial performance," while another 23.5% use analytics for "understanding the drivers of financial performance."
In other research, Deloitte Analytics has discovered many instances of associations moving all analytics staff members into a centralized, shared-services function reporting straightforwardly to finance—which generally fills in as Switzerland—a neutral gathering that can supply the whole association without the political machinations that can disturb a more decentralized approach. As indicated by Tom Davenport, "Clearly, associations need their analytical investments to pay off. Where preferred to have that occur over in finance?"

Data analytical tools are progressively being used to help the best line, as customer arranging areas use analytics assets for an assortment of wage related activities. Around 27% of respondents trust that analytics is most critical for expanding sales to new and existing customers, trailed by 17% who trust it is most vital for activities to diminish customer beat and increment faithfulness. Another 17% who trust it is most imperative in expanding sales constrain adequacy by focusing on qualified prospects.

Strikingly, some of the interviewees were not excessively worried that corporate endeavours to build their insight into individual customers so as to better target them with applicable and alluring offers would be viewed as obtrusive. One noticed that many customers welcome and are starting to expect a more customized approach and frequently see precisely composed and imparted messages or offers as alluring. "I do not think purchasers get greatly irritated unless the message is totally inappropriate or irrelevant," said one executive who works for a worldwide retail brand.

A more noteworthy concern, is "indifference to a wide range of marketing correspondences," given the sheer volume of consumer targeted messaging. In supply chain management, where taken a toll productivity is central, cost control was positioned the most essential data analytics area. Almost 30% of respondents named "reduce acquisition costs" as the most critical use, while another 26% concentrated on approaches to "upgrade provider and vendor connections."

While the reasons most picked in the areas of administrative and risk are not straightforwardly attached to income or cost control, they surely indirectly
affect the financial performance of an association. Specifically, the most imperative reason—supported by around 26% of respondents—is using data analytics to "distinguish fraud prior simultaneously."

Clearly, given the across the board occurrence of corporate fraud, especially inside progressively complex supply chains that depend on layers of associated suppliers, this is money well spent. As per a worldwide investigation of fraud directed by Kroll Advisory Solutions in 2012, 75% of those surveyed revealed episodes of fraud at their association. The effect is very sensational, as the Association of Certified Fraud Examiners appraises that the anticipated worldwide aggregate fraud loss is more than $3.5 trillion every year.19

What does the future hold?

While the survey revealed close consistent confidence for the capability of analytics throughout the following three years, options for the use of analytical capacities are as far reaching and various as the reams of data associations seem to be—and will be—producing and parsing. A significant trend, as analytics develops inside an association, is in developing techniques for packaging, sharing, and selling significant data and insights to outside associations (generally customers) that can profit by the data and expertise. Not exclusively does this make revenue streams that drive corporate development and pay for data foundation investments, however it can additionally bond customer connections.

Forty-four percent of survey respondents were "extremely" or "genuinely" open to sharing their data in return for insight-enhancing from different associations. A substantial assembling association has, over the most recent year and a half in 2013, started to concentrate on creating analytics driven, counselling focused services that assistance its customers better comprehend the risks, opportunities, and needs of its own business. As indicated by one of the association's analytics leaders, this external concentration has permitted

customers with less broad or beginning time examination abilities to utilize the association's resources to support their analytics work. "Here and there they offload unique projects to us, or we make a custom (data) answer for them. This work unquestionably makes our associations with these customers stickier," said one respondent. This offers a separating advantage that most competitors cannot supply.

Eventually, competitive advantage is the thing that drives promote advancement of analytics inside many major associations. In the case of forecasting better decision-making, or honing its product and service blend, the next generation of big data capabilities appears to be bound to produce revenue and hurry go-to-advertise offerings. Contingent upon their industry, talent, risk tolerance, and demonstrated capacity to legitimize the investment, new analytics applications are blooming inside most data genuine associations. The menu of new and foreseen offerings is broad and speaks to the summit of the advances data scientists have made as of late by over and again demonstrating the substantial worth of analytical discoveries.

As data analytics become more imbued in corporations and data better managed, associations and industries will proceed to create and operationalize innovative applications. A couple of the many advancing trends incorporate customer relationship-situated applications, for example, sales pipeline transformation analytics to even more proficiently drive sales comes about, estimation analysis, acquisition modelling, and prescient analytics. Another developing growth area is in the field of dynamic demonstrating, which a restorative company’s analytics leader portrayed as utilizing a progression algorithm to decide the suitable level of therapeutic dosing of patients that at last may prompt better measures of care. One executive has authored a term—"creative analytics"—that appears to incorporate the prospects for big data in any association. "I'm finding that better than average analysts who drive value are the ones who are imaginative and deductive problem solvers," he clarified. "On the off chance that you can take an exceptionally complex business problem and make an interpretation of it to business people, well, that takes a
huge amount of creativity. ... It’s not just about putting raw data on a spreadsheet anymore."20

Conclusions

Since the evidence in this dissertation delineates that analytics is developing in significance and fame, it is savvy to position your association to prevail as the field grows and develops. A great deal of data is still not being used for decision-making, and numerous companies have just simple analytical technology.

There are a few stages a business can take to position itself for analytical competition: • Acquire the vital talent now. Unmistakably talent for analytics and big data is now hard to come by, and the deficiency will turn out to be much more articulated after some time. Since employees with the fundamental aptitudes are difficult to hire, your company might need to start a program to train and develop them, within the near future. Another way to deal with this issue is to cooperate with colleges from which you hire—encourage them to develop degree projects or majors in analytics. • Tie your analytics work to decision-making. Better decisions do not occur naturally with better data and analysis; they are the consequence of specific endeavors to enhance decision cultures and forms, and to change the comprehension and behaviours of front-line workers. • Apply analytics to marketing and customers. There are many areas to which analytics can be connected, however the best financial returns frequently originate from advertising and customer situated applications• Create more focal coordination for analytics. It is managed by an assortment of executive roles inside companies, and an extensive variety of capacities advantage from the ability. More structure around coordination and arrangement—however not full centralization—is expected to understand the effect and advantages of a company’s data all through the company. Consider a

little "analytics center of excellence" in case you're not prepared to completely unify the capacity. • Plan your strategy for analytics after some time. For all intents and purposes each association in our online surveys and interviews is chipping away at analytics projects and activities. Be that as it may, if analytics is going to drive technique in associations, there should be an association between analytical plans and strategy improvement processes. Firms should distinguish the present projects, as well as those that will tail them throughout the following years. A multiyear viewpoint is essential for arranging the development of analytical abilities after some time.

There are few signs on the horizon that the amount of data is going to diminish or that the requirement for better will reduce. Consequently, it appears to be likely that analytics will advance from its initial improvement arranges and will keep on maturing as long as it creates tangible financial benefits for the corporation. The associations that plan for this evolution today will be the analytical competitors of the future.21

Wise quotes and predictions

Google’s Chief Economist Hal Varian on Statistics and Data:

“I keep saying the sexy job in the next ten years will be statisticians. People think I’m joking, but who would’ve guessed that computer engineers would’ve been the sexy job of the 1990s? The ability to take data—to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it—that’s going to be a hugely important skill in the next decades, not only at the professional level but even at the educational level for elementary school kids, for high school kids, for college kids. Because now we really do have essentially free and ubiquitous data. So the

complimentary scarce factor is the ability to understand that data and extract value from it.”

Andrew McAfee (MIT scientist) and Erik Brynjolfsson (Prof. at MIT Sloan School of Management)- co-founders of the Initiative on the Digital Economy

“Exploiting vast new flows of information can radically improve your company’s performance. But first you’ll have to change your decision-making culture.”

22 https://www.mckinsey.com/industries/high-tech/our-insights/hal-varian-on-how-the-web-challenges-managers

Bibliography

Herman Heyns. (DG) Becoming an analytics driven organization to create value. UK. Available at http://www.ey.com/uk/en/services/specialty-services/big-data---becoming-an-analytics-driven-organisation-to-create-value

Varian Hal. (2016). *What’s the Big Data?* Available at https://whatsthebigdata.com/2016/09/06/hal-varian-on-intelligent-technology/

Volker Markl. (DG) *Big Data Analytics Chances and Challenges.* Available at http://www.dima.tu-berlin.de

