
 -i-

Implementing a Bot Assis-
tant: A case study for a bot
helping users using an app

Kalleas Christoforos

SID: 3306170003

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Mobile and Web Computing

DECEMBER 2019

THESSALONIKI ð GREECE

-ii -

Implementing a Bot Assis-
tant: A case study for a bot
helping users using an app

Kalleas Christoforos

SID: 3306170003

Supervisor: Dr. Ioannis Magnisalis

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Mobile and Web Computing

DECEMBER 2019

THESSALONIKI ð GREECE

 -iii -

Abstract

This thesis was written as a part of the MSc in Mobile and Web Computing at the Inter-

national Hellenic University. Its main scope was to show how a chatbot could act as a

virtual assistant, for the users of a large-scale application, providing the following fea-

tures:

V Interactive user guidance

V Modeling and performing business processes

V Personalized services to the users (i.e. provision of notifications, hints and per-

sonal information) based on their past preferences and action history

So, initially, a web application was created to computerize the business processes that

take place in a hypothetical medical center. Then, for the sake of this application, a chat-

bot was created to provide all the above services to the users.

Kalleas Christoforos

Saturday, November 30, 2019

-iv-

Acknowledgements

This thesis could not be realized without the guidance and the unreserved support of

the supervising professor Dr. Ioannis Magnissalis.

Finally, it should be noted the very useful contribution (with comments, suggestions

and ideas) of colleagues who also did their thesis under the supervision of Dr. Magnis-

salis.

Kalleas Christoforos

Saturday, November 30, 2019

 -v-

Contents

ABSTRACT ... III

ACKNOWLEDGEMENTS ... IV

CONTENTS ... V

PICTURES ... XI

TABLES .. XII

1 INTRODUCTION .. 13

1.1 PROBLEM STATEMENT ... 13

1.2 OBJECTIVES AND AIMS .. 15

2 LITERATURE REVIEW .. 16

2.1 USER GUIDANCE .. 16

2.2 BUSINESS PROCESS MODELING AND PERFORMING 16

2.2.1 Process Modeling Techniques .. 17

2.3 PERSONALIZED SERVICES IN APPLICATIONS .. 17

2.4 VIRTUAL ASSISTANTS FOR APPLICATIONS .. 17

2.4.1 Assistant Services ... 17

2.5 CHATBOTS .. 18

2.5.1 History of Chatbots ... 19

2.5.2 Chatbots and Interactional Capability .. 19

Contagiousness .. 19

Conceptuality .. 19

Adaptability .. 20

Proactivity .. 20

2.5.3 Chatbot Technologies... 20

Automatic Speech Recognition (ASR) .. 20

Natural Language Processing (NLP) .. 20

-vi-

Natural Language Toolkit (NLTK) .. 21

2.5.4 Chatbot Architecture .. 21

2.5.5 Human-Chatbot Interaction Process ... 22

Text processing... 23

Keyword processing and Response .. 24

2.5.6 Chatbot User Interface ... 24

Monolithic design style... 25

Interactive design style .. 25

2.5.7 Implementing Chatbots .. 26

Implementation techniques ... 26

Recent known attempts ... 27

2.6 MAKING CHATBOTS WORK AS VIRTUAL ASSISTANTS 27

2.6.1 How Chatbots can Provide Assistant Services 27

Notification assistant services .. 28

How-to assistant services ... 28

Contextual assistant services ... 28

Personalized assistant services ... 29

2.6.2 Challenges ... 29

3 PROBLEM DEFINITION/MATERIALS & METHODS 30

3.1 GENERAL SCOPE ... 30

3.2 GENERAL GOALS ... 30

3.2.1 Providing Interactive User Guidance with Chatbot 31

3.2.2 Modeling and Performing Business Processes with Chatbot 31

3.2.3 Providing Personalized Services with Chatbot 31

3.3 THE MECIS APPLICATION ï A COMPLETE OVERVIEW 31

3.3.1 Scope.. 32

3.3.2 Stakeholders.. 32

3.3.3 Problems .. 32

Employees ... 32

Patients .. 32

3.3.4 System Users .. 33

Description and responsibilities .. 33

User working environment .. 33

 -vii -

3.3.5 System Functional Requirements... 33

General requirements .. 33

Administrator Requirements ... 34

Secretary Requirements ... 35

Patient Requirements .. 37

3.3.6 System Non-Functional Requirements .. 38

Applicable standards ... 38

System requirements... 39

Design constraint requirements ... 39

Logical database requirements .. 39

3.3.7 System Modeling ... 39

General Architecture .. 39

MECIS Database Server... 40

MECIS Application Server .. 40

MECIS Client .. 44

3.3.8 Implementation .. 49

3.3.9 Deployment .. 50

Prerequisites ... 50

Deployment process .. 50

3.4 MECIS-BOT PLANNING ... 51

3.4.1 Scope .. 51

3.4.2 Stakeholders .. 51

3.4.3 Problems ... 51

Employees... 52

Patients .. 52

3.4.4 Constraints ... 53

3.4.5 Goals ... 53

Employees... 53

Patients .. 53

3.4.6 System Users ... 54

Description and responsibilities ... 54

User working environment .. 54

3.4.7 System Functional Requirements... 54

Employees... 54

-viii -

Patients .. 54

General requirements .. 55

3.4.8 System Non-Functional Requirements ... 55

4 CONTRIBUTION/EXPERIMENTS ... 56

4.1 MECIS-BOT SYSTEM ANALYSIS .. 56

4.1.1 System Use cases for Employees ... 57

[UC11] Making a typical ñhow-toò question....................................... 57

4.1.2 System Use cases for Patients .. 58

[UC21] Looking for doctors ... 58

[UC22] Making an appointment .. 59

[UC23] Notifying about pending appointments 62

[UC24] Showing appointments ... 63

[UC25] Canceling an appointment ... 64

4.1.3 General System Use Cases.. 65

[UC31] Restarting the dialogue .. 65

4.2 DEVELOPMENT TECHNOLOGIES, TOOLS AND LANGUAGES 65

4.2.1 Rasa Framework .. 65

Architecture ... 66

Conversation management ... 66

Communication channels .. 67

Rasa servers ... 68

Rasa project .. 68

4.2.2 BotUI Framework .. 71

UI elements ... 71

4.3 MECIS-BOT SYSTEM MODELING ... 72

4.3.1 Human-Chatbot Conversation Design .. 72

Conversation unit .. 72

Conversation block ... 73

Conversation process .. 75

4.3.2 System Architecture ... 76

4.3.3 MECIS-Bot Client.. 78

Architecture ... 79

MECIS-Bot UI .. 79

 -ix-

4.3.4 MECIS-Bot Server ... 80

MECIS-Bot Interaction Engine ... 80

MECIS-Bot Actions Engine... 86

4.4 MECIS-BOT IMPLEMENTATION ... 89

4.4.1 MECIS-Bot Client .. 89

MECIS-Bot UI ... 89

4.4.2 MECIS-Bot Server ... 92

Rasa projects .. 92

MECIS-Bot Interaction Engine ... 93

MECIS-Bot Actions Engine... 94

4.5 MECIS-BOT DEPLOYMENT ... 94

4.5.1 Prerequisites .. 94

4.5.2 Deployment process ... 95

4.6 MECIS-BOT OPERATION AND EXPERIMENTS .. 96

4.6.1 Test Cases for Employees... 96

[UC11/TC1] How to edit the contact info of the medical center? . 96

[UC11/TC2] How to deactivate a user ("happy path")? 97

[UC11/TC3] How to deactivate a user ("unhappy path")? 98

4.6.2 Test Cases for Patients .. 99

[UC21/TC1] Looking for pathologists .. 99

[UC22/TC1] Making an appointment with a pathologist............... 100

[UC22/TC2] Making an appointment with the favorite pathologist

 .. 102

[UC22/TC3] Making an appointment with a pathologist other than

the favorite one ... 104

[UC22/TC4] Making an appointment asking for a dermatologist

from the beginning of the request .. 106

[UC22/TC5] Trying to make an appointment asking for a non-

available doctor from the beginning of the request 108

[UC23/TC1] Notifying about pending appointments 109

[UC24/TC1] Showing only the pending appointments 110

[UC24/TC2] Showing all the appointments 111

[UC25/TC1] Canceling an appointment .. 112

-x-

5 CONCLUSIONS .. 113

5.1 GENERAL CONCLUSIONS .. 113

5.2 GOAL ACHIEVEMENT ... 114

5.3 FUTURE CHALLENGES ... 115

BIBLIOGRAPHY ... 117

GLOSSARY ... 124

 -xi-

Pictures

Picture 1: Chatbot Architecture .. 21

Picture 2: Interaction Process between Human and Chatbot 23

Picture 3: "Bold 360" chatbot .. 25

Picture 4: "BMO Bolt" chatbot .. 26

Picture 5: MECIS Database ERD diagram .. 40

Picture 6: Class diagram for Common Subsystem ... 41

Picture 7: Class diagram for Models Subsystem .. 42

Picture 8: Class diagram for Controllers Subsystem .. 43

Picture 9: Conceptual web site diagram for Administrators 44

Picture 10: Conceptual web site diagram for Secretaries 45

Picture 11: Conceptual web site diagram for Patients ... 46

Picture 12: Rasa message handling process .. 67

Picture 13: MECIS-Bot conversation block .. 74

Picture 14: MECIS-Bot conversation process ... 76

Picture 15: MECIS-Bot system architecture .. 77

Picture 16: MECIS-Bot Client as a visual component of the MECIS main page 78

Picture 17: MECIS-Bot Client Architecture (Class Diagram) 79

Picture 18: MECIS-Bot Interaction Engine Architecture .. 81

Picture 19: MECIS-Bot Actions Engine Architecture (Class Diagram) 87

-xii -

Tables

Table 1: Description and responsibilities of MECIS user roles 33

Table 2: Stories for Employees .. 82

Table 3: Stories for Patients.. 82

Table 4: Intents for Employee stories .. 83

Table 5: Intents for Patient stories ... 83

Table 6: Actions for Employee stories ... 84

Table 7: Actions for Patient stories .. 85

Table 8: MECIS-Bot Actions Engine classes for Patients 88

Table 9: Cross-reference table among services and system use cases 114

Table 10: Cross-reference table among thesis goals and system use cases .. 115

 -13-

1 Introduction

In the field of software engineering, it is well known that the degree of the user acceptance

of an application depends largely on how easily and efficiently users interact with it [1].

Thus, the User Interface (UI) [2], as the part of the application where this interaction takes

place, plays a key role in the success of the application.

ɇhe most common UI design technique is the Graphical User Interface (GUI) [3]. A

GUI consists of visual elements (e.g. text boxes, combo boxes, buttons, images etc.) that

allow an application to receive data and, simultaneously, extract information. In fact, the

GUI creates the "user experience" within an application [4].

However, as the business complexity and functionality of applications increase, it is

quite difficult for the GUI itself to guide and support users as they work on the system

[5]. Although a human assistant would be a perfect solution - for this problem - a virtual

assistant could be equally helpful. Nowadays, chatbots [6] have been increasingly de-

manding the role of the virtual assistant in various applications. Based on Artificial Intel-

ligence (ȷȽ), they can simplify the interaction between humans and computers using more

human-friendly techniques.

1.1 Problem Statement

Typically, a large-scale application has many features in order to meet many functional

and non-functional requirements. Therefore, the UI of such an application contains a va-

riety of workplaces that offer various tools and functions within them.

So, as users try to work within the application, they face some needs that cannot be

effectively addressed by the UI itself and the usual auxiliary material that comes with the

application (e.g. the user manual).

-14-

More specifically, these needs are the following:

Need 1. Direct and interactive user guidance

As users try to achieve their business goals, many "how-to" questions

usually arise. Traditionally, apart from human help, the only help users

can expect - to deal with these questions - comes from the user manual

[7].

Usually, the user manual is in the form of a large book full of instruc-

tions and process descriptions. However, this cannot be considered as a

handy solution and involves only users who are familiar with textbooks

and reading instructions. On the contrary, a more interactive method of

providing assistance would certainly be more acceptable.

Need 2. Executing business processes in a structured and automated way

In order to execute a business process within an application, users must

perform a specific sequence of actions. Typically, in order to do this, they

must make the right choices from huge menus and work in complex user

interfaces.

Unfortunately, this way of working is very likely to make users feel

"lost" and "confused". Instead, they would prefer to follow specific struc-

tured workflows to tackle business needs [8]. In addition, they would feel

even better if they were guided by the system itself to do so.

Need 3. Personalized services

It is a fact that, when a user has been using an application for a long time,

it indirectly builds a kind of personal profile. Usually, it gives the same

answers to the same questions and makes the same choices when asked

to choose from the same lists of options. In addition, it is likely to provide

the application with a lot of personal data.

Therefore, the user would expect from the system to take advantage

of its past preferences and action history [9] providing notifications, hints

etc. This, of course, would facilitate its work and would provide it with a

better user experience.

 -15-

1.2 Objectives and Aims

It is obvious that a skilled person, who can always be next to the user, could help user to

cope with many of the above needs. However, of course, this is practically impossible.

So, the aim of this thesis is to show that a virtual assistant,

having the form of a chatbot, can be a satisfactory solution

to the problem discussed above.

More specifically, the detailed objectives of this thesis are as follows:

Objective 1. Direct and interactive user guidance

To show how a chatbot, acting as a virtual assistant, can provide interac-

tive guidance to the users of an application and, consequently, answer

their "how-to" questions.

Objective 2. Executing business processes in a structured and automated way

To show how a chatbot, acting as a virtual assistant, can provide straight

and structured workflows for the users to execute specific tasks.

Objective 3. Personalized services

To show how a chatbot, acting as a virtual assistant, can provide - when-

ever possible ï personalized services (i.e. provision of notifications, hints

and personal information) to the users, based on past user preferences

and action history.

-16-

2 Literature Review

This chapter defines the theoretical and academic background of this thesis. It refers to

other related work and identifies the particularities and challenges that affect the achieve-

ment of the thesis objectives.

2.1 User Guidance

Even the most advanced users of a large application need help and guidance to perform

various tasks. Traditionally, in software engineering industry, the most common way of

providing help to the users - of an application - is the user manual [7].

ɇhe user manual is intended to guide users in performing tasks. Therefore, it covers

all the processes that can be performed within the application by providing appropriate

instructions. In addition, it may include a "how-to" section to provide information on how

various business needs can be addressed by the application.

Usually, user manuals look like books, either in print or electronic form (e.g. PDFs,

HTML files etc.), containing static text and images. Thus, for every need, the user has to

search - within the manual ï for the relevant section and, then, study its contents.

2.2 Business Process Modeling and Performing

In the field of software engineering, business process modeling [10] is a modern process

automation methodology for applications. Its main objective is to model the business pro-

cesses that can be executed inside the application and define specific workflows for the

execution of them.

Subsequently, the users of the application can achieve any business goal by following

the corresponding workflow. Thus, they can be significantly more productive [8], espe-

cially when it comes to achieving important and critical business objectives.

 -17-

2.2.1 Process Modeling Techniques

There are indeed many techniques for modeling the business processes that can be exe-

cuted within an application. One of the most common techniques is Business Process

Model and Notation (BPMN) [11]. It provides a graphical notation for modeling business

processes even if they are complex and involving more than one user.

 After modeling, special BPM engines (i.e. special software) can execute the business

models. So, if a user wants to execute a specific business process it has only to execute

the corresponding model through a BPM engine. During the model execution, the system

itself guides the user to execute specific actions.

2.3 Personalized Services in Applications

Personalized user services are becoming increasingly popular in software engineering as

- it seems that - they promote user satisfaction [9]. According to related theories, user

satisfaction increases when the content suggested to them ï by an application - matches

their interests. At the same time, it is evident that users prefer content recommended by a

process in which they are directly involved.

However, research examining the provision of personalized services is still relatively

inadequate [12]. Obviously, when an application requires its users to explicitly specify

their preferences, it is relatively easy to provide such services. The challenge, of course,

is to have them automatically generated, based only on user action history and past user

preferences.

2.4 Virtual Assistants for Applications

A virtual assistant is a specific kind of software that has the role to assist the users of an

application to use the variety of tools and functions that the application provides [13]. In

most cases, a virtual assistant uses Artificial Intelligence (AI) techniques and can com-

municate with users by understanding free text and speech.

2.4.1 Assistant Services

Based on the experience of recent years, the assistant services that virtual assistants can

offer can be classified into five levels [14] depending on how much intelligence is re-

quired to provide them. The services of the first level require the least intelligence while

the services of the fifth level require the greatest one.

-18-

These levels are the following:

Level 1. Notification Services

They provide users with information about events that have taken place

inside the application domain and are related to them. Usually, this infor-

mation has the form of text messages.

Level 2. How-to Services

They provide users with help in performing specific tasks. But unlike the

usual FAQ (Frequently Asked Questions) tools, they are intended to de-

scribe the required actions in detail.

Level 3. Contextual Services

These are services that are based on recognizing and understanding the

context of a conversation. So, the meaning of what the user says is of par-

ticular importance. At the same time, given a specific thematic context,

the virtual assistant can understand irrelevant inputs and react properly.

Level 4. Personalized Services

They are based on past user preferences and history of user actions. They

provide users with personalized suggestions, notifications and personal in-

formation. In a sense, therefore, they provide a fully personalized work

experience.

Level 5. Autonomous Services

These are services that are, first of all, fully customizable to the users. In

providing them, the virtual assistant performs various tasks, on behalf of

the users, requiring them to have little or no involvement.

2.5 Chatbots

A chatbot (or, simply, bot) is a computer program, based on Artificial Intelligence (AI),

which interacts with users in natural language [6]. In general, a chatbot can be considered

as a question-response system designed to simulate a smart conversation with a human

partner. This ability is based on all the recent developments in the fields of Natural Lan-

guage Understanding (NLU) [15] and Voice Recognition Technology (VRT) [16].

 -19-

2.5.1 History of Chatbots

The first chatbots were not really smart, but they actually had a collection of predefined

answers that matched specific questions. They were elementary and were trying to create

the spoofing of a conversation between human and computer. In addition, they had little

to no contextual understanding [17].

The principles of chatbots are based on Alan Turing's "Computing Machinery and

Intelligence" paper in 1950. In particular, the "Turing test", developed on this paper, is

widely regarded as the key criterion for assessing the intelligence of an electronic system

[18].

One of the most important first attempts to implement the "Turing test" is considered

the ELIZA program developed in 1966 at MIT [19]. ELIZA provided the user with the

possibility of a simple conversation and worked very actively in the scientific community.

2.5.2 Chatbots and Interactional Capability

In order to meet the user expectations for human-like interaction, chatbots must address

the concept of interactional capability. Interactional capability exceeds technical capa-

bilities and has the meaning of reaching a rather communication goal [20].

Interactive capability is formed by a set of features [21] that allows a chatbot to par-

ticipate actively in a conversation and show awareness of the subject being discussed, the

evolving chat context and the flow of dialogue.

Contagiousness

At first, contagiousness is defined as the feature of a chatbot to communicate to users the

underlying logic [22]. Providing contagiousness helps users to identify the possibilities

embedded in the software [23], which improves system usability [24].

Contagiousness is, in other words, the capability of a chatbot to communicate the

system features to users [25]. The interesting part of this communication lies in the nature

of the interface used. Thus, instead of menus and buttons, chatbots reveal the system's

capabilities through conversation, bringing new ways to the learning of the system.

Conceptuality

Conceptuality is a chatbot feature that enables it to prove its attention in a conversation

[26]. In particular, it allows it to monitor the flow of the conversation, to understand its

operational context and to interpret every element that arises during its course [27].

-20-

Adaptability

In general, adaptability refers to the ability to adapt functionality and communication

ways, with an individual (or a category of people), to the particular circumstances and

characteristics of the individual [28]. With regard to chatbots, adaptability can increase

their "social intelligence" [21] [29] by allowing - a chatbot - to realize the specifics of the

current situation. At the same time, it provides the ability ï for the chatbot - to adapt

dynamically its "behavior" to better respond to special needs [30].

Proactivity

In general, proactivity [21] refers to the ability to act autonomously on behalf of the user

[31], thereby reducing the effort required to perform a task [32]. Regarding chatbots, pro-

activity allows a chatbot to take initiatives during the execution of a task [27]. In partic-

ular, chatbots, based on proactivity, can propose problem-solving methods or provide new

data.

2.5.3 Chatbot Technologies

The above capabilities have emerged as a result of the application of various technologies.

Automatic Speech Recognition (ASR)

Speech recognition is one of the most revolutionary techniques in human-computer inter-

action [33]. It has only been possible in recent decades as it requires high computing

power and storage capacity.

Automatic Speech Recognition (ASR) is, actually, one of the speech recognition

phases. It aims to convert speech to text while preserving speech context [33] [34]. After

that, other language processing technologies can be used to analyze and process the re-

sulting text.

Natural Language Processing (NLP)

Natural Language Processing (NLP) deals with a wide variety of issues related to the

analysis and computation of human languages [35]. It is an area of Artificial Intelligence

and Linguistics that aims to enable computers to understand human languages [36].

Chatbots are, actually, an application area of the NLP technology [33]. They use NLP-

based methods to convert natural language text into a programming-friendly data struc-

ture, while preserving the meaning of the original text. At the same time, they are able to

identify important pieces of information - inside text - such as names, places, events,

dates, times and prices [36].

 -21-

Natural Language Toolkit (NLTK)

The Natural Language Toolkit (NLTK) is a set of tools based on the principles of NLP

technology [33]. Specifically, it is used to extract words from text, assemble them into

phrases and analyze them semantically.

In fact, NLTK is a set of open source modules. They are written in the Python pro-

gramming language and are part of the Python libraries.

2.5.4 Chatbot Architecture

Each chatbot is, in fact, a complex software made up of specific components that work

together based on a specific architecture [37] [33] (see Picture 1). It is the responsibility

of the chatbot developer to implement them and they are as follows:

Picture 1: Chatbot Architecture

× Responder

It is the component that transfers the data, which the user enters, into the internal

parts of the chatbot. At the same time, it performs the reverse operation by export-

ing the chatbot response to the user interface.

C
h

a
tb

o
t

Responder

Classifier

User Interface

Graphmaster

Simulation

Interface

-22-

× Classifier

At first, it filters and, possibly, corrects the input data. Then it extracts the inter-

esting building elements and, finally, transfers them to the Graphmaster for pro-

cessing.

Conversely, it receives the results from the Graphmaster and, after processing, it

forwards them to the Responder.

× Graphmaster

It is, in fact, the core component of the chatbot. Applying specific algorithms and

based on various models it performs the conceptual analysis of the content.

2.5.5 Human-Chatbot Interaction Process

In general, if the medium of the communication is text, the human-chatbot interaction

takes place as a repetitive process of the following two phases [33] [38] (see Picture 2):

Phase 1. Text processing

Text (in natural language format) is processed, by the chatbot, and the rel-

evant keywords are extracted.

Phase 2. Keywords processing and Response

The extracted ï from the previous phase ï keywords are processed, by the

chatbot, and the adequate response is generated.

 Obviously, if speech becomes the medium of human-chatbot communication then, at

the beginning of the above process, a voice-to-text conversion phase must be added.

 -23-

Picture 2: Interaction Process between Human and Chatbot

Text processing

During this phase [33], the inserted text (in natural language format) is processed by the

chatbot and the relevant keywords are extracted. The phase consists of the following

steps:

Step 1. Text input

Text is inserted by human in natural language format.

Text (in natural

language format)

Word extraction and

tagging

Tagged Words

Phrase formation

Phrases

Keyword extraction

Keywords

Keyword processing

and

Response making

Response

Phase 1

Phase 2

Text input

Response

output

-24-

Step 2. Word extraction and tagging

The inserted text is parsed into separate words and each word is tagged by its

position and its relation to the other words.

Step 3. Phrase formation

Using grammar rules, tagged words form phrases.

Step 4. Keyword extraction

Keywords are extracted from the above phrases by removing insignificant

words.

Keyword processing and Response

During this phase [33], the keywords, which have been extracted from the previous phase,

are processed by the chatbot and the adequate response is generated. The phase consists

of the following steps:

Step 1. Keyword processing and Response making

The chatbot, based on the extracted keywords and its programmable logic,

generates the adequate response. The response could be text, speech or the

execution of an action.

Step 2. Response output

The generated response is presented to human.

2.5.6 Chatbot User Interface

According to human-chatbot interaction process, any chatbot needs a User Interface that:

V provides UI elements to human to create input (i.e. a human's working area)

V presents output to human

In general, nowadays, there are two distinct trends in designing user interfaces for

chatbots [39]:

¶ Monolithic design style

¶ Interacti ve design style

 -25-

Monolithic design style

Chatbots that follow the monolithic design style are built to provide short answers to short

questions. So, they are usually used as customer-service tools for business.

In most cases, they have a simple user interface in which the human's working area

consists of a simple text box located at a specific fixed position. A typical example of this

category is "Bold 360" [40] (see Picture 3) that can provide a variety of customer services

to business.

Picture 3: "Bold 360" chatbot

Interactive design style

Chatbots that follow the interactive design style try to create a more human-like experi-

ence to the human-chatbot conversation. They are usually used to provide an alternative

way of interacting with a business for purposes beyond answering simple questions.

In most cases, the human's working area is dynamic in terms of both location and

content. Therefore, users can interact with the chatbot either by typing text or using visual

UI elements (e.g. Text Boxes, Buttons and Dropdown Lists). A typical example of this

category is "BMO Bolt" [41] (see Picture 4) that offers bank services to the customers of

Bank of Montreal.

Human's working area

-26-

Picture 4: "BMO Bolt" chatbot

2.5.7 Implementing Chatbots

The core engine of any chatbot is the Natural Language Processing Engine (NLP Engine)

[17]. Thus, whenever a user makes a query, the chatbot sends it to the NLP Engine. The

NLP extracts all the useful query elements and returns them to the chatbot. Finally, the

chatbot processes the elements, formulates a respond and returns it to the user.

Implementation techniques

A widely accepted chatbot implementation technique is the domain-based chatbot [17].

Chatbots of this category focus on a specific domain and can be used in various areas

such as education, customer service, e-commerce and more. According to this approach,

user queries are semantically analyzed and transferred to the core component of the sys-

tem called domain browser. The browser finds the appropriate answer to a domain ware-

house and eventually returns to a natural language to the user. It has also been found that

the efficiency of such a chatbot is increased if the domain knowledge combined with

interactive knowledge [42].

 -27-

Another approach of implementing a chatbot is the OCR based chatbot [17]. Chatbots

of this approach use the Optical Character Recognition (OCR) technology [43] to convert

scanned documents into machine encoded text. Then, from the extracted text, they gen-

erate question-answer pairs via transformations and ranking algorithms [44]. Finally, they

store the question-answer pairs, as the chatbot knowledge, using AIML [45]. These chat-

bots can be used in customer services and in education for answering frequently asked

questions [46].

Recent known attempts

In general, chatbots can be categorized into two types: owned and shared [47].

Owned chatbots are being developed by large companies to improve the quality of

customer services and reduce the overall cost of these services. This is often the case in

sectors like banking, telecommunications and e-commerce. An example is Erica [48]

which is constructed by the Bank of America to help customers with bank problems. An-

other example is Charlie [49], the AT&T support chatbot that acts as customer service

representative.

Shared chatbots are, actually, chatbot frameworks that help developers to build their

one chatbots. Some examples are Microsoft Bot Framework [50], Facebook Messenger

[51], Google Assistant [52], and Amazon Lex [53]. All of these frameworks can be used

to build chatbots for various purposes that handle a variety of third-party data.

2.6 Making Chatbots Work as Virtual Assistants

Based on its interactional capability, a chatbot can provide some very useful offerings to

the users of an application. In fact, chatbots seems like a perfect choice as virtual assis-

tants in various industry sectors including customer services, health, travel and education

[54]. For this reason, more and more businesses are predicting the use of chatbot to serve

their customers [47].

2.6.1 How Chatbots can Provide Assistant Services

In general, to be considered a chatbot as a virtual assistant is sufficient to satisfy the levels

of assistant services categorization that presented in Section 2.4.1. Chatbots that have

reached the highest level can be considered the most sophisticated.

-28-

The chatbot that is going to be built for the needs of this

thesis is enough to cover the first four levels of assistant

services categorization.

Notification assistant services

Using their UI environment, chatbots can easily display various messages to the user. A

notification is nothing more than a category of messages.

 Of course, the most important element of a notification is its content. The more per-

sonal this is, the more important it can be considered [55]. Personalizing notifications is

an issue that can be integrated into the broader chapter of providing personalized services

(see the discussion about personalized services below).

How-to assistant services

With their interaction capability, chatbots could provide ongoing assistance to the users

of an application [25]. Providing customer support [56] services can guide the users to

use the UI of an application while executing tasks. The important thing is that they can

do this in an interactive way rather than simply by offering a sterile help text [57]. Addi-

tionally, chatbots can provide a better user experience making the interaction more hu-

man-like [58].

Contextual assistant services

When performing a task, a chatbot could understand the meaning of the interaction and

try to guide the entire process efficiently and productively [59]. It is for sure that one of

the main reasons to use a chatbot is to increase productivity [60]. Using a chatbot can be

more productive than using the tools of a classic user interface (e.g. menus, screens,

toolbars etc.) [20]. In any case, it is very helpful for the user to know the reaming steps

of a process or the conceptual meaning of each step [61].

 -29-

Personalized assistant services

The exploitation of personal data from chatbots could certainly foster a relationship of

trust and cooperation with the user [62]. Thus, chatbots could customize responses based

on user level, personal interests and needs [63]. In any case, it would be ideal for a chatbot

to show different behaviors to different users [55].

In addition, in some cases, chatbots could act proactively in order to improve produc-

tivity [20]. In this respect, chatbots could make initiatives by asking ï the user - appro-

priate questions [20]. This would reduce the amount of time required for the job and the

required effort.

Finally, chatbots could guide users to set goals and track their progress [64]. In addi-

tion, they could drive the user to exploit some capabilities of the application, which would

otherwise not be willing to do so [65].

2.6.2 Challenges

In recent years, chatbots have evolved to a considerable extent. However, they still do not

fully meet user expectations [66] [67] because, while their functional performance has

improved considerably [68] [69], their communication skills [20] [70] have not developed

to the same extent. ɇhis drawback becomes more important since, according to the theory

of Equation of the Media [71], people are very interested in the communication charac-

teristics of a computing system [72].

Since chatbots communicate with users interactively, the social factor plays a very

important role in their success [66]. Consequently, the issue of user acceptance is mainly

social rather than technical [30]. In fact, chatbots demonstrating communication skills are

more acceptable than others [73] [74] [75]. On the contrary, if they do not meet these

requirements, they may cause frustration and / or discomfort [67].

In addition, most chatbots are built on older human conversations that experience

adaptability and privacy problems. Most of the time, users end up waiting for human help

to resolve their issue after chatting with a chatbot [47].

-30-

3 Problem Definition/Materials
& Methods

This chapter sets out the context of this thesis, according to the problem statement (see

Section 1.1) and the objectives (see Section 1.2) presented in the introduction. It also

defines the basic principles and functionality of the virtual assistant to be built.

3.1 General Scope

The scope of this thesis is generally defined by the "problem statement" described in Sec-

tion 1.1. Actually, it will try to propose a solution to this problem demonstrating that,

given any large-scale application, a chatbot can be created to act as a "virtual assistant"

for the users of the application and, thus, meet their needs. At the same time, it intends to

show that a chatbot can also be a flexible and satisfying add-on to the application.

Thus, as part of this thesis, a chatbot will be created to provide assistant services to

the users of a specific real application. Actually, it is a web application that will be made

just for this purpose. It is called "MEdical Center Information System" (or, simply, ME-

CIS) and it is supposed to meet the basic IT needs of a hypothetical medical center.

Finally, the desired chatbot will be developed as a distinct subsystem of the MECIS

application. Just for reference purposes, the chatbot will have the code name "MECIS-

Bot".

3.2 General Goals

In general, the chatbot to be constructed for this thesis will attempt to cover the first four

levels of the assistant services classification presented in Section 2.4.1. At the same time,

it will try to meet all the challenges that chatbots usually face when acting as virtual as-

sistants (see Section 2.6.2).

More specifically, this thesis will try to succeed the following goals.

 -31-

3.2.1 Providing Interactive User Guidance with Chatbot

To build a chatbot that offers a "live" and interactive manual to the users of the MECIS

application.

Usually, most of the help an application can provide to its

users comes from the user manual. In this thesis, however,

an attempt will be made to show how a chatbot can be

used, in the alternative, for the same purpose.

3.2.2 Modeling and Performing Business Processes with Chatbot

To build a chatbot that provides straight and structured workflows for the users of the

MECIS application, to execute specific business processes.

 In fact, based on the literature, chatbots are not sug-

gested as a method for modeling business processes. In this

thesis, however, an attempt will be made to use the chat-

bot's potential to achieve this goal.

3.2.3 Providing Personalized Services with Chatbot

To build a chatbot that provides personalized services (i.e. provision of notifications, hints

and personal information), to the users of the MECIS application.

The critical point here is that the chatbot will be based

only on stored personal data, past user preferences and the

action history.

3.3 The MECIS Application ï A Complete Overview

The "MEdical Center Information System" (MECIS) is a complete application that in-

tends to fulfil the basic computing needs of a hypothetical medical center. It is aimed at

both patients and staff of the medical center.

-32-

3.3.1 Scope

In general, a medical center provides health services to the public. It usually has many

doctors with many specialties. In addition, it has auxiliary staff for secretarial support.

Patients who want to visit a doctor must make an appointment first. Needless to say

that the medical center has to provide all the necessary information about its doctors and

their working schedule.

3.3.2 Stakeholders

The main stakeholders of MECIS are:

M-S1. Employees

All the secretarial support staff and the system administrators.

M-S2. Patients

All the patients of the medical center.

For the sake of simplicity, doctors are not regarded as main stakeholders but as secondary.

3.3.3 Problems

MECIS focuses only on the major problems of the above stakeholders. At the same time,

it makes many abstractions to them, as it is only a "case study" and not a commercial

information system.

Employees

M-P1. Doctors data management

M-P2. Doctors schedule management

M-P3. Appointment management

Patients

M-P4. Contact the medical center

M-P5. Looking for doctors (of a specific specialty or not)

M-P6. Appointment making

M-P7. Appointment cancellation

M-P8. Overview of appointment history

 -33-

3.3.4 System Users

MECIS defines three major user roles, which are:

M-U1. Administrator

M-U2. Secretary

M-U3. Patient

Description and responsibilities

Each user, based on its role, gains specific rights and responsibilities (see Table 1).

User Role Description Responsibilities

Administrator Represents the system

administrators

- Manages system users

Secretary Represents all the sec-

retarial support staff

- Feeds the system with the doctor schedule

and other useful data (e.g. contact info)

- Checks for new appointments and accepts

them

Patient Represents all the pa-

tients

- Looks for doctors

- Makes appointments

Table 1: Description and responsibilities of MECIS user roles

User working environment

The user working environment is common to all users. Of course, the system provides a

specific set of features for each user role.

In addition, in order for a user to work on the system, it must first sign in.

3.3.5 System Functional Requirements

Below, are the functional requirements that MECIS is required to meet.

General requirements

M-FR1. Sign In

Signing into the system, as an active system User.

M-FR2. Sign Up

Singing up to the system as creating a new User of the "PATIENT" Role.

a) The system does not allow, for the new User, to have the same

"Username" with someone else user.

-34-

ü Any User of the other two roles can be created only by an administra-

tor.

M-FR3. Sign out

Signing out of the system, after having signed in first.

M-FR4. Open User Profile

Opening the Profile of the current signed in User.

a) The system does not display the User's Password.

M-FR5. Modify User Profile

Modifying the Profile of the current signed in User, after opening it first.

a) The system does not allow, for the current User, to change the

"Username".

M-FR6. Change Password

Changing the Password of the current signed in User.

Administrator Requirements

E-Mail subsystem

M-FR7. Set "E-mail Subsystem" properties (e.g. E-mail Server Name, E-mail Ad-

dress)

ü "E-mail Subsystem" is a subsystem that is responsible for sending e-

mail messages to users.

System users

M-FR8. Create System User

Inserting a new System User to the database.

a) The system does not allow, for the new User, to have the same

Username with someone else user.

b) The system sets the Password of the new user equal to its Username.

M-FR9. Browse System Users

Displaying the list of all System Users.

M-FR10. Search for System Users (using criteria upon one or more fields)

Filtering the above list in order to display only the System Users that satisfy

specific search criteria.

M-FR11. Open System User

Opening a System User, to display him (or her) data, after selecting him (or

her) from the System Users list.

a) The system does not display the User's Password.

 -35-

M-FR12. Modify System User

Modifying a System User's data, after opening him (or her) first.

a) The system does not allow modifying Username.

M-FR13. Deactivate/Activate System User

Deactivating an active System User (or activating a deactivated System User),

after opening him (or her) first.

ü A deactivated System User is not allowed to sign in, anymore.

Secretary Requirements1

Contact info

M-FR14. Open Contact Info

Opening Contact Info data.

M-FR15. Modify Contact Info

Modifying Contact Info data, after opening them first.

Doctors

M-FR16. Create Doctor

Inserting a Doctor to the database.

M-FR17. Browse Doctors

Displaying the list of all Doctors.

M-FR18. Search for Doctors (using criteria upon one or more fields)

Filtering the above list in order to display only the Doctors that satisfy specific

search criteria.

M-FR19. Open Doctor

Opening a Doctor, to display him (or her) data, after selecting him (or her)

from the Doctors list.

M-FR20. Modify Doctor

Modifying a Doctor's data, after opening him (or her) first.

M-FR21. Write down Doctor Working Hours

Writing down, in a week base, a Doctor's Working Hours, after selecting him

(or her) from the Doctors list.

M-FR22. Delete Doctor

Physically removing a Doctor from the database, after selecting him (or her)

from the Doctors list.

1 All Secretary requirements are valid for administrators too.

-36-

Appointments

M-FR23. Create Appointment

Inserting an Appointment to the database, on behalf of a specific patient.

a) The system does not allow the appointment of non-working hours.

b) The system does not allow the new Appointment to have the same day

and time with another Appointment for the same Doctor.

M-FR24. Browse Appointments

Displaying the list of all Appointments.

M-FR25. Search for Appointments (using criteria upon one or more fields)

Filtering the above list in order to display only the Appointments that satisfy

specific search criteria.

M-FR26. Open Appointment

Opening an Appointment, to display its data, after selecting it from the Ap-

pointments list.

M-FR27. Modify Appointment

Modifying an Appointment's data, after opening it first.

a) The system does not allow the Appointment to have the same day and

time with another Appointment for the same Doctor.

M-FR28. Delete Appointment

Physically removing a pending Appointment from the database, after select-

ing it from the Appointments list.

a) The system allows deleting only pending Appointments that has not

been inserted by patients.

M-FR29. Accept/Reject Appointment

Modifying the state of a pending (and only pending) Appointment to "AC-

CEPTED" or "REJECTED", after opening it first.

a) The E-Mail Subsystem sends an automated e-mail message to the pa-

tient's email address, to inform him (or her).

 -37-

M-FR30. Cancel Appointment

Canceling a pending or accepted Appointment, after opening it first.

a) The E-Mail Subsystem sends an automated e-mail message to the pa-

tient's email address, to inform him (or her).

M-FR31. Close accepted Appointment (as completed)

Closing a previously accepted Appointment as if it has been completed, after

opening it first.

a) The system changes the Appointment's state to "COMPLETED".

b) The E-Mail Subsystem sends an automated e-mail message to the pa-

tient's email address, to inform him (or her).

Patient Requirements

Contact info

M-FR32. View Contact Info

Viewing Contact Info data.

Doctors

M-FR33. Browse Doctors

Displaying the list of all Doctors.

M-FR34. Search for Doctors (using criteria upon one or more fields)

Filtering the above list in order to display only the Doctors that satisfy specific

search criteria.

M-FR35. Search for available Doctors (efficient searching)

Producing a list that contains only the Doctors that have a given specialty and

are available during a given period.

a) The system displays the list of available doctors sorted based on the

selection history. This means that the doctor that has been selected the

most ï in the past ï comes first, and so on.

M-FR36. View Doctor

Opening a Doctor, to view his (or her) data, after selecting him (or her) from

the Doctors list.

-38-

Appointments

M-FR37. Create Appointment

Inserting an Appointment to the database, on behalf of the signed in user-

patient.

a) The system sets the state of the new Appointment to "PENDING".

b) The system does not allow the appointment of non-working hours.

c) The system does not allow the new Appointment to have the same

day and time with another Appointment for the same Doctor.

M-FR38. Browse Appointments

Displaying the list of all Appointments that have been inserted by the signed

in user-patient.

M-FR39. Search for Appointments (using criteria upon one or more fields)

Filtering the above list in order to display only the Appointments that satisfy

specific search criteria.

M-FR40. Open Appointment

Opening an Appointment, to display its data, after selecting it from the Ap-

pointments list.

M-FR41. Modify Appointment

Modifying a pending (and only pending) Appointment's data, after opening it

first.

a) The system does not allow, for a patient, to change the Appointment's

state.

M-FR42. Cancel Appointment

Canceling a pending or accepted Appointment, after opening it first.

a) The E-Mail Subsystem sends an automated e-mail message to the

medical center's email address (as it has been defined in the contact

info).

3.3.6 System Non-Functional Requirements

Below, are the non-functional requirements that MECIS is required to meet.

Applicable standards

M-NFR1. 3-tier architecture

MECIS is a Web Application that based on 3-tier architecture. It uses PHP

for the backend and HMTL/JAVASCRIPT for the front.

 -39-

System requirements

M-NFR2. Apache Web Server

MECIS runs on an Apache Web Server.

M-NFR3. MySQL Database

MECIS stores its data on a MySQL Database.

Design constraint requirements

M-DR1. Common browsing mechanism

All Lists are displayed in browsers that have the same structure, same layout

and same (basic) functionality.

M-DR2. Common filtering mechanism

All browsers offer the same basic filtering mechanism.

M-DR3. Common Opening mechanism

All entities are opened in editors that have the same structure, same layout

and same (basic) functionality.

M-DR4. Common deleting mechanism

All browsers offer the ability to delete a record using the same mechanism.

Logical database requirements

M-LDR1. Referential Integrity

MECIS does not allow:

1) Deleting a Doctor that has related Appointments.

2) Inserting an Appointment without defining the related Doctor and user-

patient.

3.3.7 System Modeling

In general, MECIS is based on the 3-tier architectural model and the MVC [76] design

pattern.

General Architecture

The MECIS system is subdivided into the following three tiers:

× MECIS Database Server

× MECIS Application Server

× MECIS Client

-40-

MECIS Database Server

The MECIS Database Server contains the relational database that stores all data of ME-

CIS. The ERD diagram of the database is given below.

appointment

appointment_idPK

appointment_patient_idFK

appointment_doctor_idFK

appointment_user_idFK

doctor

doctor_idPK

doctor_office

doctor_office_idPK

doctor_worktime

doctor_worktime_idPK

doctor_worktime_date

doctor_worktime_time

doctor_worktime_doctor_idFK

options

options_idPK

user

user_idPK

user_name

user_password

1

*

1

*

*

1

*

Picture 5: MECIS Database ERD diagram

MECIS Application Server

The MECIS Application Server contains mainly the application logic of the system. In

addition, it provides all the necessary tools and processes for the database management.

 -41-

Common subsystem

UTILS

+ToJsonObj()
+wppIsNull()

CONFIG

+db_servername
+db_username
+db_password
+db_name

MAIL

+SendMail()

DB

+query()
+update()
+insert()
+delete()

clientProxy.php

complete_signup.php

signin_action.php

signup_action.php

signout_action.php

It is the client's "gate". Each call to
a server controller - from the
client tier - goes through here.

Completes new user's sign up
process making the user "active".
It is called from the link that the
system e-mails to the new user
(after signup).

Contains the functionality of
signin.php client's web page.

Contains the functionality of
signup.php client's web page.

Implements sign out.

Picture 6: Class diagram for Common Subsystem

-42-

Models subsystem

BaseModel

+getMeta()
+getField()

+__construct()

appointmentModel

+getMeta()

available_worktimesModel

+getMeta()

doctorModel

+getMeta()

doctor_officeModel

+getMeta()
doctor_worktimeModel

+getMeta()

optionsModel

+getMeta()

userModel

+getMeta()

appointmentsModel

+getMeta()

doctorsModel

+getMeta()

usersModel

+getMeta()

Picture 7: Class diagram for Models Subsystem

 -43-

Controllers subsystem

BaseController

#onBeforeSave()
#onAfterSave()
#getBrowserMeta()
#getLoaderMeta()

+getBrowserFullMeta()
+getLoaderFullMeta()
+browse()
+load()
+create()
+save()
+delete()

appointmentController

-checkDateTimeUponDoctorWorkTime()

#onAfterSave()
#getBrowserMeta()
#getLoaderMeta()

-checkAppUniqueTime()
-checkAppDelete()
-sendMail

#onBeforeSave()

available_worktimesController

#getBrowserMeta()
#getLoaderMeta()

doctorController

#getBrowserMeta()
#getLoaderMeta()

doctor_officeController

#getBrowserMeta()
#getLoaderMeta()

doctor_worktimeController

#getBrowserMeta()
#getLoaderMeta()

+loadForDoctor()

optionsController

#getBrowserMeta()
#getLoaderMeta()

+getOptionsRecord()

userController

#getBrowserMeta()
#getLoaderMeta()

Picture 8: Class diagram for Controllers Subsystem

-44-

MECIS Client

The MECIS Client contains all the UI elements that allow users to communicate with the system. It actually

consists of a large number of web pages. Because some of these are only available for specific user roles,

the diagrams below present the client web pages per user role separately.

Client perspective for Administrators

appointmentList.php

appointmentEdit.php

doctorList.php

available_worktimesList.php

signin.php

pwdEdit.php

doctorEdit.php

doctor_officeEdit.php

userList.php

userEdit.php

doctor_worktimeEdit.php

optionsEdit.php

Index.php

doctor_officeView.php

Picture 9: Conceptual web site diagram for Administrators

 -45-

Client perspective for Secretaries

appointmentList.php

appointmentEdit.php

doctorList.php

available_worktimesList.php

signin.php

pwdEdit.php

doctorEdit.php

doctor_officeEdit.php

userEdit.php

doctor_worktimeEdit.php

Index.php

doctor_officeView.php

Picture 10: Conceptual web site diagram for Secretaries

-46-

Client perspective for Patients

appointmentList.php

appointmentEdit.php

doctorList.php

available_worktimesList.php

signin.php

pwdEdit.php

doctorView.php

userEdit.php

Index.php

doctor_officeView.php

signup.php

Picture 11: Conceptual web site diagram for Patients

 -47-

Web pages

Main Page

Current ï signed in ï user's name. At the same time, acts as a

popup menu that offers "User Profile" management and the ability

to "Change Password".

Menu area. The menu is dynamic and it is adapted to the role of

the current user (that is, it has different content for an administra-

tor than a secretary).

Page area. Each page opens in this area (which contains an

iframe).

-48-

Browsers

Refreshes the list of records (fetching from the DB the rec-

ords that satisfy the user's search criteria).

Opens the editor for editing the selected record.

Opens the editor for inserting a new record.

Deletes the selected record (asking for user confirmation

first).

System messages area.

A value that forms a "field search criterion":

f ield = value

or

f ield like value % (for varchar fields).

All "field search criteria" are combined together with the

and operator.

 -49-

Editors

3.3.8 Implementation

MECIS has been developed as a 3-tier web-based application hosted on an Apache

Server.

The client tier has been built on HTML, CSS and JavaScript. The application tier has

been built on PHP. Finally, the database tier has the form of a MySQL database.

System messages area.

Closes the editor and returns to the relevant browser.

Saves changes to DB. Blue field labels denote

"required" fields

-50-

3.3.9 Deployment

In general, the deployment of MECIS follows the classic deployment process of a web

application supported by an SQL database.

Prerequisites

The following prerequisites must have already been installed on the deployment machine:

V An Apache HTTP Server with PHP support (version 5.5 or later)

When configuring PHP, care must be taken to load "pdo_mysql" extension and

have "short_open_tag" option enabled.

V A MySQL (or MariaDB) Database Server

Deployment process

The deployment material of MECIS consists only of the "mecis" folder contained in the

"SourceFiles" folder that accompanies this thesis document.

So, for the deployment of MECIS, the following process should be followed:

1. Initially, the "mecis" folder must be copied into the DocumentRoot folder that has

been defined in the Apache configuration file.

2. Using a simple text editor, the credentials of a valid MySQL user (i.e. the

"db_username" and the "db_password") are assigned to the corresponding pa-

rameters of the "mecis\server\common\CONFIG.php" file.

3. Finally, using a MySQL management tool (e.g. the MariaDB command-line Mon-

itor), the script file "mecis\wpp.sql" must be executed in order for the database

"wd_dofa" to be created.

After completing the above process, the MECIS application can be accessed - from

the deployment machine itself - using this URL: http://localhost/mecis.

It should also be noted that the MECIS database will initially contain some demo data.

These demo data are the following:

Demo Users

Username Password User Role

admin admin Administrator

power power Secretary

user1 user1 Patient

user2 user2 Patient

http://localhost/mecis

 -51-

Demo Doctors

Last Name First Name Specialty

Smith Jim pathologist

Jones Tom pathologist

Thomson Maria dermatologist

3.4 MECIS-Bot Planning

As already mentioned, MECIS-Bot plans to be a virtual assistant for the users of the ME-

CIS application. Its basic design principles and the requirements it has to address are

described below.

3.4.1 Scope

The main scope of MECIS-Bot is to be the key tool for achieving the overall goals of this

thesis (see Section 3.2). Thus, MECIS-Bot should be designed and constructed in such a

way as to provide the following basic features:

MB-FT1. Provision of interactive user guidance

MB-FT2. Modeling and performing business processes

MB-FT3. Provision of personalized services to the users (i.e. notifications, hints and

personal info)

3.4.2 Stakeholders

From the perspective of MECIS-Bot the main stakeholders are:

MB-S1. Employees

All the employees of the medical center that have access to MECIS.

MB-S2. Patients

All the patients of the medical center.

3.4.3 Problems

Like any software, MECIS-Bot is going to help stakeholders address their problems. The

problems identified and selected, in this thesis, to be addressed by MECIS-Bot are as

follows.

-52-

Employees

Employees are presumably advanced users. Therefore,

they only need some guidance to perform tasks.

MB-P1. Finding the right workspaces and using the right tools to perform tasks

Employees need guidance to move to appropriate workplaces, within the

wider application environment, and use the appropriate tools to perform

specific tasks.

Patients

Patients are considered novice users. Therefore, they

would appreciate a more human-friendly way of executing

tasks, as opposed to using GUI elements.

In addition, they expect some useful personal services

(such as various notifications).

MB-P2. Looking for doctors (of a specific specialty or not)

MB-P3. Appointment making

MB-P4. Expending, when making an appointment, the most favorite doctor (by

specialty) to proposed as a first choice

MB-P5. Appointment cancellation

MB-P6. Overview of pending appointments

MB-P7. Overview of appointment history

MB-P8. Proactive notification about pending appointments

 -53-

3.4.4 Constraints

The challenges that a virtual assistant has to face (as presented in Section 2.6.2) impose

some basic constraints on MECIS-Bot:

MB-C1. The communication between the user and MECIS-Bot should be as hu-

man-friendly as possible and should look like a human conversation.

MB-C2. The conversation between the user and MECIS-Bot should take the form

of a series of stories [77].

Each story has a specific subject, starts with a new user demand and ends

with satisfying it. Therefore, during a story, the chatbot tries to "under-

stand" the context of the conversation and lead the user to the expected

result.

MB-C3. In the case where the dialogue is deadlocked (according to the user's opin-

ion), the user has the opportunity to start a new story at any time.

MB-C4. The chatbot should offer ï to the user - an immediate ability to communi-

cate with a human by various means (e.g. telephone, email, etc.).

3.4.5 Goals

In general, MECIS-Bot intends to offer a solution to the problems presented in Section

3.4.3.

More specifically, the goals to be achieved by MECIS-Bot are different for each

stakeholder and are the following:

Employees

MB-G1. Provide direct help to execute a specific task visiting the appropriate work-

places - within the application's wider working environment

Patients

MB-G2. Presentation of the doctors of the medical center (of a specific specialty or

not)

MB-G3. Easy and friendly way to make an appointment

MB-G4. Proposal of the favorite doctor (per specialty) based on the history of the

appointments, when appointment making

MB-G5. Easy and friendly way to cancel an appointment

MB-G6. Viewing of pending appointments and total appointment history

MB-G7. Automatically show pending appointments notification

-54-

3.4.6 System Users

From the perspective of MECIS-Bot, users of the MECIS system are divided into two

categories-roles:

MB-U1. Employee

MB-U2. Patient

Description and responsibilities

User Role Description

Employee Represents all the MECIS users that are, actually, employees of the

Medical Center

Patient Represents all the patients

User working environment

The user working environment - provided by MECIS-Bot - is common to all users and is

immediately accessible, inside the broader MECIS working environment.

3.4.7 System Functional Requirements

The functional requirements that MECIS-Bot must meet derive from the list of problems

and constraints MECIS-Bot has to address (as described in sections 3.4.3 and 3.4.4, ac-

cordingly).

Employees

MB-FR1. Answering a ñhow-toò question

The chatbot may guide an employee to do something - inside the applicationôs

working environment ï by interacting with him (or her) in an interactive way.

Patients

MB-FR2. Displaying doctors

The chatbot can display the doctor list (of a specific specialty or not).

MB-FR3. Making an Appointment

The chatbot can offer the current patient the ability to make an appointment.

At the same time, it can suggest the most favorite doctor as the first choice.

MB-FR4. Overviewing of appointments

The chatbot can offer the current patient the ability to display his (or her) ap-

pointments (only the pending ones or all of them).

 -55-

MB-FR5. Canceling an Appointment

The chatbot can offer the current patient the ability to cancel a pending ap-

pointment.

MB-FR6. Notifying about pending appointments

The chatbot can automatically notify the current patient about pending ap-

pointments.

General requirements

MB-FR7. Restarting the dialogue

The user can restart the dialogue (i.e. terminate the current running story) at

any time.

ü After a story termination, the system automatically starts a new story

(i.e. accept a new user request).

3.4.8 System Non-Functional Requirements

Below, are the non-functional requirements that MECIS-Bot should meet.

MB-NFR1. Responding to unclear answers

The system must respond to vague user answers by asking for more clear and

specific data.

MB-NFR2. Responding to incomprehensible requests

The system must respond to incomprehensible requests by asking the user to

rephrase his (or her) query.

-56-

4 Contribution/Experiments

This chapter discusses the MECIS-Bot system, describes its implementation process, and,

finally, gives some indicative scenarios of its operation.

4.1 MECIS-Bot System Analysis

In general, the MECIS-Bot system should satisfy the functional and non-functional re-

quirements presented in Sections 3.4.7 and 3.4.8, accordingly. In addition, according to

MECIS-Bot planning (see Section 3.4.7), MECIS-Bot should provide largely different

functionality for each user role. However, there are some common functions that apply

to all users equally.

The following UML use cases outline this system and identify the key elements of its

structure and processes. Note that, in all of them, MECIS-Bot is simply referred to as

"system".

 -57-

4.1.1 System Use cases for Employees

[UC11] Making a typical ñhow-toò question

Title An Employee makes a ñhow-toò question

Module MECIS-Bot

Prime actor Employee

Other actors

Startup event ɇhe Employee wants to know how and where to execute

a task

Preconditions The Employee has successfully signed in and the system

prompts - the Employee - to make a question

Postconditions

Basic flow 1. The Employee types his (or her) question (e.g. "how

to deactivate a user?").

2. The system starts itself a new story-conversation.

3. If the system has all the data needed to respond, it dis-

plays the appropriate information and terminates the

story-conversation.

Alternative flows The system needs additional data (starts from Step 3

of the basic flow)

3. The system responds by asking for additional data.

4. The Employee types the additional data.

5. If the system has all the data needed to respond, it dis-

plays the appropriate information and terminates the

story-conversation.

Otherwise, it goes to Step No. 3 of the current alterna-

tive flow.

-58-

4.1.2 System Use cases for Patients

[UC21] Looking for doctors

Title A Patient is looking for doctors

Module MECIS-Bot

Prime actor Patient

Other actors

Startup event The Patient wants to get a list of doctors

Preconditions The Patient has successfully signed in and the system

prompts - the Patient - to make a request

Postconditions

Basic flow 1. The Patient types an appropriate request (e.g. "show

doctors").

2. The system asks for the Patient to select a specific spe-

cialty.

3. The Patient selects a specialty.

4. The system displays a list with the doctors of the se-

lected specialty.

Alternative flows The Patient wants to see all the doctors regardless of

their specialty (starts from Step 3 of the basic flow)

3. The Patient does not select a specific specialty.

4. The system displays a list of all doctors.

There are no doctors of the selected specialty (starts

from Step 4 of the basic flow)

4. The system displays an appropriate message (e.g.

"There are no Doctors!").

 -59-

[UC22] Making an appointment

Title A Patient is making an appointment

Module MECIS-Bot

Prime actor Patient

Other actors

Startup event The Patient wants to make an appointment

Preconditions The Patient has successfully signed in and the system

prompts - the Patient - to make a request

Postconditions

Basic flow 1. The Patient types an appropriate request (e.g. "make

appointment").

2. The system displays a unique list of all the specialties

of the available doctors.

3. The Patient selects a specialty.

4. The system displays a list of the doctors of the selected

specialty (because of the way the system responded to

the second step, it is certain that the doctors appearing

have some availability).

5. The Patient selects a doctor.

6. The system displays a list of the days on which the

selected doctor is available (because of the way the

system responded to the second step, it is certain that

the list can not be empty).

7. The Patient selects a day.

8. The system displays a list of times on which the se-

lected doctor is available on the selected day (because

of the way the system responded to the second step, it

is certain that the list can not be empty).

9. The Patient selects a time.

10. The system creates the new appointment and displays

an appropriate message.

-60-

Alternative flows There are no available doctors at all (starts from Step

2 of the basic flow)

2. The system displays a message like "There are no

available doctors".

The Patient's request message includes a straightfor-

ward reference to a specific specialty (e.g. "I need a

pathologist" (starts from Step 1 of the basic flow)

The system continues the execution flow from Step 4 of

the basic flow.

The Patient does not want to select a specific doctor

(starts from Step 5 of the basic flow)

5. The Patient selects "ANY" instead of selecting a spe-

cific doctor.

6. The system displays a list of the days on which at least

one doctor, of the selected specialty, is available (be-

cause of the way the system responded to the second

step, it is certain that the list can not be empty).

7. The Patient selects a day.

8. The system displays a list of all possible combinations

between available doctors, of the selected specialty,

and the times, on the selected day, they are available

(because of the way the system responded to the sec-

ond step, it is certain that the list can not be empty).

9. The Patient selects a doctor-time pair.

10. The system creates the new appointment and displays

an appropriate message.

 -61-

The system identifies that the most Patient's favorite

doctor, of the selected specialty, is available (starts

from Step 4 of the basic flow)

4. The system recommends the favorite doctor to the Pa-

tient.

5. The Patient accepts the proposal.

6. The system displays a list of the days on which the

doctor is available (because of the way the system re-

sponded to the second step, it is certain that the list can

not be empty).

7. The Patient selects a day.

8. The system displays a list of times on which the doctor

is available on the selected day (because of the way

the system responded to the second step, it is certain

that the list can not be empty).

9. The Patient selects a time.

10. The system creates the new appointment and displays

an appropriate message.

-62-

[UC23] Notifying about pending appointments

Title The system notifies the current Patient about pending ap-

pointments

Module MECIS-Bot

Prime actor

Other actors

Startup event The Patient signs in

Preconditions The Patient has successfully signed in and there are pend-

ing appointments of him (or her)

Postconditions

Basic flow 1. The system displays a notification containing a list

with all pending appointments.

Alternative flows

 -63-

[UC24] Showing appointments

Title A Patient asks for showing the appointment list

Module MECIS-Bot

Prime actor Patient

Other actors

Startup event The Patient wants to get his/her appointment list

Preconditions The Patient has successfully signed in and the system

prompts - the Patient - to make a request

Postconditions

Basic flow 1. The Patient types an appropriate request (e.g. "show

appointments").

2. The system displays a list with all the appointments.

Alternative flows The Patient wants to see only the pending appoint-

ments (starts from Step 1 of the basic flow)

1. The Patient clarifies, at his/her request, that he/she is

only interested in pending appointments (i.e. typing

"show pending appointments").

2. The system displays a list with only pending appoint-

ments.

There are no appointments (starts from Step 2 of the

basic flow)

2. The system displays an appropriate message (e.g.

"There are no Appointments!").

-64-

[UC25] Canceling an appointment

Title A Patient cancels an appointment

Module MECIS-Bot

Prime actor Patient

Other actors

Startup event The Patient wants to cancel an appointment

Preconditions The Patient has successfully signed in and the system

prompts - the Patient - to make a request

Postconditions

Basic flow 1. The Patient types an appropriate request (e.g. "cancel

appointment").

2. The system displays a list with all the pending ap-

pointments.

3. The Patient selects an appointment.

4. The system cancels the appointment and displays an

appropriate message.

Alternative flows There are no pending appointments (starts from Step

2 of the basic flow)

2. The system displays an appropriate message (e.g.

"There are no pending Appointments!").

 -65-

4.1.3 General System Use Cases

 [UC31] Restarting the dialogue

Title A patient asks for restarting the dialogue

Module MECIS-Bot

Prime actor User (Employee or Patient)

Other actors

Startup event ɇhe user wants to restart the dialogue ï with the bot ï to

make a new request

Preconditions The user has successfully signed in and developed a dia-

logue with the system

Postconditions The system prompts - the user - to make a new request

Basic flow 1. The user presses the "Restart" button.

2. The system terminates the current story-conversation.

Alternative flows

4.2 Development Technologies, Tools and Lan-
guages

There are some technologies that play a fundamental role in the modeling and implemen-

tation of MECIS-Bot, even in the early stages of these processes. These technologies are

presented below.

4.2.1 Rasa Framework

Rasa [78] is a machine learning framework for automated text and voice conversations.

In fact, it provides the entire necessary infrastructure for developing contextual AI assis-

tants and chatbots. In other words, it is a framework. It is open source and free but that

does not prevent it from competing well with all known non-free frameworks in the chat-

bot area [79].

Rasa can understand messages, develop conversations and connect to messaging

channels and APIs. It is also customizable and it can be intergraded into any existing

system.

-66-

Architecture

Rasa is mainly consisting of two modules:

Á Rasa NLU

Á Rasa Core

Rasa NLU

Rasa NLU [80] is an open-source natural language processing tool for intent recognition

and entity extraction, in chatbots. For example, if you get a sentence like "I'm looking for

an Italian restaurant in Athens" it will return something like the following structure:

{

 "intent": "search_restaurant",

 "entities": {

 "cuisine" : " Italian ",

 "location" : "Athens "

 }

}

Rasa core

Rasa core [81] is a dialogue engine for AI software. It is a key part of the Rasa framework.

It is mostly built in the Python programming language and is, generally, based on open

standards and open software.

The key element of its philosophy is that the next step - in a dialogue - is not based

on some kind of programming code but on properly trained machine learning models.

This approach [82] enables the manufacturer to create chatbots that can hold a contextual

conversation without having to code all possible variants of the conversation.

Conversation management

The dialogue between the user and Rasa develops as a series of stories. According to

Rasa, a story is a conversation between a user and a chatbot that is characterized by a

specific context and is identified through user messages and chatbot responses.

 -67-

Message handling

According to Rasa architecture [83], the typical flow of the handling process of a received

message is shown in the following diagram of the Rasa documentation.

Picture 12: Rasa message handling process

In particular, the above process consists of the following steps:

1. The received message is transmitted to an interpreter, who recognizes the inten-

tion expressed by the message and extracts any entities contained therein.

The "Interpreter" is handled by Rasa NLU.

2. Then, the Interpreter sends the extracted information to an object called "Tracker"

which is, actually, responsible for keeping track the state of the whole conversa-

tion.

The Tracker and all other objects involved in the next steps are handled by Rasa

Core.

3. The Tracker sends the above information, along with the current state of the con-

versation, to the "Policy" object.

4. The Policy chooses which action to take next and asks for it to be executed.

5. The selected "Action" generates a return message, based on its definition, and

informs the Tracker of its execution.

6. Finally, the Rasa Core returns the generated message to the user.

Communication channels

There are indeed many ways for a software to communicate with Rasa. The most common

of these are presented below.

-68-

Python libraries

It is to be expected that, since Rasa is built with Python, this is the most obvious method

ï for an application - to communicate with Rasa NLU and Rasa Core, too. Unfortunately,

however, this requires code development in Python, which is not necessarily easy or de-

sirable.

HTTP API

The Rasa Framework provides (in fact, of course, this is an offer of the last versions of

Rasa) a complete open REST API based on HTTP. This API offers endpoints to manage

any phase of the conversation management.

Certainly, this is a method of communication that does not

require knowledge of Rasa's internal structures and func-

tions. Additionally, it does not require code development in

Python.

Rasa servers

Each Rasa installation has two special servers. Actually, these servers represent Rasa for

any other application needs to provide chatbot services to its users. Therefore, the only

thing the application has to do, to exploit these servers, is to use the above HTTP API.

Rasa (main) server

It is a HTTP server handling requests, receiving through a rich API, based on Rasa Core.

It is, actually, the main server of a Rasa installation.

Rasa actions server

It is also an HTTP Server, but it is used exclusively by Rasa Core. Its only role is to

perform specialized advanced actions for the sake of Rasa Core.

Rasa project

A Rasa project contains all the components required for a Rasa installation to operate.

These components are stored inside specific files following a specific format.

Initially, a Rasa project is created using the tools that the Rasa Framework provides.

The chatbot developer is, then, responsible to create the appropriate objects, inside the

project files.

The main categories of objects of a Rasa project are described below.

 -69-

Intents

An intent represents the intention that is hidden within a user message. Practically, it is a

keyword that describes the meaning of the whole phrase.

According to Rasa, all intents that need to be understood - by the chatbot - during the

various conversations, must be recorded in a file called "nlu.md". For example, a list of

intents, inside this file, looks like below:

intent:check_balance

- what is my balance

intent:greet

- hey

- hello

The intents must also be recorded in the "domain.yml" file, as shown below:

intents:

 - check_balance

 - greet

Entities

Entities represent the pieces of information that can be extracted by user messages. For

example, from the "show me chinese restaurants" phrase, the "cuisine" entity can be ex-

tracted with the "chinese" value.

 According to Rasa, all entities that require special processing must be recorded in the

"domain.yml" file. For example, a list of entities looks like below:

entities:

 - cuisine

 - name

Actions

Actions are the things that the chatbot runs in response to user input. There are many kinds

of actions in Rasa:

¶ Utterance actions

Start with utter_ and send a specific message to the user.

¶ Custom actions

They are defined by the chatbot developer, writing Python code, and can perform

various tasks. Finally, they usually return one or more messages to the user.

-70-

¶ Default actions

They are defined by Rasa itself and have a specific impact (e.g. conversation re-

start etc.).

According to Rasa, all actions except Default must be recorded. In addition, each

Utterance action must be defined by an appropriate utterance template (containing, actu-

ally, the message to be displayed by the chatbot). Finally, the code that defines each Cus-

tom action must be written in Python inside a python script file (which, by convention, is

called "actions.py").

For example, a list of Utterance actions along with the corresponding templates looks

like below:

actions:

- utter_greet

- utter_happy

templates:

 utter_greet:

 - text: "Hey! How are you?"

 utter_happy:

 - text: "Great, carry on!"

Forms

One of the most common parts of a human-chatbot conversation is information gathering.

In these cases, the chatbot needs a series of data to perform an action (making appoint-

ments, etc.).

A Rasa form is a special tool that is capable of gathering information from the user in

a specific order. At the same has the ability to validate the inserted data.

In fact, Rasa forms are custom actions created by the chatbot developer writing code

in the Python language. Therefore, in a Rasa project, all forms are located in the "ac-

tions.py" file.

Stories

Rasa stories are conversation examples that are used to "train" the Rasa Core. In fact, they

define the conversation cases that the chatbot can manage when communicating with the

user.

 -71-

All stories must be recorded in a file called "stories.md". A story example follows

below:

greet + location/price + cuisine + num ber of people

* greet

 - action_ask_howcan i help

* inform{"location": " athens ", "price": " very cheap"}

 - action_on_it

 - action_ask for _cuisine

* inform{"cuisine": " greek "}

 - action_ask_num berof people

* inform{"people": " four "}

 - action_ack_do find

4.2.2 BotUI Framework

BotUI [84] is an open source framework to build UI for chatbots. It is based on JavaScript

and Vue [85]. It provides a JavaScript API for displaying a variety of UI controls, inside

a specific "client area".

BotUI has nothing to do with the conversation manage-

ment at all. It is just a framework for visualizing the con-

versations content.

 According to BotUI, the client area of a chatbot is provided by a compound HTML

component that is created as an instance of the BotUI class. Consequently, all UI elements

that the chatbot wants to display - to the user - are contained within it.

UI elements

The main UI elements that the BotUI framework offers to chatbot developers are as fol-

lows:

Á Message

A static text inside an ellipse. It can be shown as a chatbot message (with gray

background color at the left) or a human message (with blue background color at

the right).

Á Text Box

A simple text box that allows the user to type some text.

-72-

Á Button Group

A set of buttons each expressing a different choice. The user can click on only one

of them.

Á Single Selection Dropdown List

A dropdown list of different options. The user can select only one of them.

4.3 MECIS-Bot System Modeling

MECIS-Bot should be regarded as a subsystem of the MECIS system. Nevertheless, it

has its own autonomy and it must meet its own requirements (see Sections 3.4.7 and

3.4.8). In addition, it must provide the appropriate environment for the seamless execution

of the use cases of Section 4.1.

It is obvious that, the choice of Rasa as the framework for

the development of MECIS-Bot imposes certain assump-

tions on the system-modeling phase.

At the same time, of course, many key components of ME-

CIS-Bot are based on the Rasa Framework and take ad-

vantage of its benefits.

4.3.1 Human-Chatbot Conversation Design

In general, the conversation between MECIS-Bot and the user is based on the concept of

story which is also the basic concept of Rasa Framework (see Section 4.2.1). According

to Rasa, a story is not just a process of exchanging messages but also an entity that has

specific characteristics and behavior.

Conversation unit

According to MECIS-Bot, the conversation is evolving as a series of independent stories.

Under this approach, a story represents a distinct conversation unit.

 -73-

MECIS-Bot extends further the concept of story and adds a set of specific specifica-

tions to it:

ü Each story has a specific conceptual context that is automatically identified by the

chatbot itself.

ü Each story has a beginning and an end.

o Each story is started by the chatbot with an initial welcome message.

o Each story ends in two ways:

Á The chatbot "concludes" that the purpose of the conversation has

been achieved and, at the same time, presents the expected results.

Or

Á The user has requested its termination.

ü The termination of a story simultaneously triggers the start of a new story.

Conversation block

According to MECIS-Bot, each story is technically composed as a series of conversation

blocks. In general, a conversation block (see Picture 13) consists of three elements:

Á Chatbot message

It is either a prompting message (prompting the user to take some action) or a

reply message from the previous conversation block.

By convention, it always appears on the left, in gray background color.

Á Human's working area

It consists of one or more UI input elements that allow the user to respond to the

chatbot's prompt by actually creating a message to the chatbot.

By convention, it always appears under the chatbot message.

Á Human message

The actual message that the user created above.

By convention, it always appears on the right, in blue background color.

Chatbot message

A chatbot message consists of one or more of the following UI elements:

Á Text

Á Icons

Icons make text more readable.

-74-

Á Links

Html links that lead to a specific URL.

HumanΩs
working area

Chatbot message

Human message
Conversation Block

Conversation Block

Picture 13: MECIS-Bot conversation block

Human's working area

In chatbots that follow the monolithic design style, the human's working area is fixed and

it is located outside the conversation area (see Section 2.5.6).

Unlike many commercial chatbots, MECIS-Bot follows the

interactive design style. So, the human's working area is

dynamic in terms of both location and content.

In fact, MECIS-Bot displays the human's working area under every prompt message.

This allows the user to respond by keeping the chatbot's message in its field of view.

 -75-

In particular, MECIS-Bot offers to the user - in order to create input - the following

input UI elements:

Á Text Boxes

A Text Box allows the user to type some text.

Á Button Groups

A Button Group is a set of buttons each expressing a different choice. The user

can click on only one of them.

Á Single Selection Dropdown Lists

A Dropdown List offers a list of unique options to the user. Then, the user selects

one of them.

Conversation process

The process, by which a conversation is developed and conversation blocks are created,

is a sequence of four steps (see Picture 14):

Step 1. MECIS-Bot creates a new conversation block and displays a message to

the user prompting him/her to respond (e.g. to give some input).

At the same time, it offers ï to the user - an appropriate input UI element

that is displaying right under the prompt message.

Step 2. The user acts with the input UI element and provides some data (e.g. types

in some text).

Step 3. MECIS-Bot receives the input data and displays it, as a text message, on

the right side of the available space.

Step 4. MECIS-Bot checks whether the story has reached its end.

If so, it creates a new conversation block containing only one final reply

message.

Otherwise, it goes to Step No1.

-76-

HumanΩs
working area

Chatbot message

Human message

Step 1. "MECIS-Bot" displays a message to the user prompting him/her to
respond (e.g. to give some input). At the same time, it offers - to the user -
an appropriate input UI element that is displaying right under the prompt
message

Step 2. The user acts
with the input UI
elements (e.g. types in
some text)

Step 3. The Bot accepts
the user's message and
displays it on the right side
of the available space

Step 4. "MECIS-Bot"
checks whether the
story has reached its
end.
If so, it creates a new
conversation block
containing only one
final reply message.
Otherwise (as shown
here), it goes to Step
No1.

Picture 14: MECIS-Bot conversation process

4.3.2 System Architecture

The architecture of the MECIS-Bot system should be studied in the context of the archi-

tecture of the MECIS system itself. In any case, of course, it must meet the above princi-

ples of conversation design.

As described in Section 3.3.7, MECIS is a 3-tier application consisting of the follow-

ing tiers:

× MECIS Database (i.e. Database Server)

× MECIS Application Server

× MECIS Client

So, the components of MECIS-Bot should either be included in some of these tiers or

form separate architectural tiers.

 -77-

More specifically, the main components that make up MECIS-Bot are as follows (see

Picture 15) and they are distributed over two architectural tiers (i.e. "MECIS-Bot Client"

and "MECIS-Bot Server"):

Á MECIS-Bot UI

Á MECIS-Bot Interaction Engine

Á MECIS-Bot Actions Engine

MECIS Client

MECIS-Bot Client

MECIS-Bot UI

MECIS Application Server

Controller1

ControllerN

Model1

Controller2
Model3

MECIS Database

MECIS-Bot Server

MECIS-Bot
Actions Engine

Model2

ModelM

MECIS-Bot
Interaction Engine

Picture 15: MECIS-Bot system architecture

More details on MECIS-Bot components are given in the following sections.

MECIS-Bot Client

MECIS-Bot Server

-78-

4.3.3 MECIS-Bot Client

The MECIS-Bot Client provides the MECIS-Bot with the UI required to communicate

with all users, regardless of their role (i.e. Employ or Patient). In fact, it works the same

way for both Employees and Patients. At the same time, it keeps a link to the Interaction

Engine that is, indeed, the "brain" of the system.

In terms of architecture, the MECIS-Bot Client is fully integrated into the broader

MECIS Client as a typical visual component (see Picture 16). However, it retains its au-

tonomy and, based on its design, can be integrated into any other application.

Picture 16: MECIS-Bot Client as a visual component of the MECIS main page

 -79-

Architecture

MECIS-Bot Client consists of a single UI component called "MECIS-Bot UI". This com-

ponent implements all the necessary functionality. It is defined by the homonymous class

shown in Picture 17 and described below.

MECIS-Bot UI

+botUI: BotUI

+init ()

-_processServerResponse()
-_callServer()
-_showBotPrompt()
-_showAfterRestartBotPrompt()

-_processServerError()

+currentBotMessage: String
+currentActionType: String
+currentActionDef: Object

-_afterRestart: Boolean
-_serverDomain: String

Picture 17: MECIS-Bot Client Architecture (Class Diagram)

MECIS-Bot UI

MECIS-Bot UI is a visual component that can be considered as part of the MECIS main

page (see Picture 16). Thus, it is automatically activated when the main page is loaded.

Properties

¶ botUI

The visual component that visualizes the client area of the chatbot.

¶ currentActionType

The type of the input UI element that the chatbot is going to display. The default

value of this property is text, which means that the chatbot is going to display a

simple text box.

As described in Section 4.3.1, the possible options are as follows: Text, Buttons

or Options.

¶ currentBotMessage

The message that the chatbot is going to display.

¶ currentActionDef

The UI element that the chatbot is going to display.

-80-

Methods

¶ _showBotPrompt()

Displays ï inside the client area of the chatbot ï either the current message or the

current UI element, according to currentActionType.

¶ _callServer()

Sends a message to the MECIS-Bot Interaction Engine.

¶ init()

Initializes the chatbot and clears the client area.

4.3.4 MECIS-Bot Server

MECIS-Bot Server contains the key components of the MECIS-Bot. More specifically,

these components are the following:

Á MECIS-Bot Interaction Engine

Á MECIS-Bot Actions Engine

As can be seen from the system analysis of MECIS-Bot (see Section 4.1), the system

offers a completely different set of services to employees than to patients. After all, the

conversations with employees have a completely different background from those with

patients.

This finding is very crucial for modeling the MECIS-Bot

Server. It i ndicates clearly the need to subdivide, each of

the above components, into two object packages (one for

Employees and one for Patients).

MECIS-Bot Interaction Engine

The MECIS-Bot Interaction Engine represents, actually, the Rasa Core [81]. Therefore,

according to the principles of the Rasa Framework, it is responsible for the development

of the interactive conversation with the users. To accomplish this, instead of using some

kind of programming logic, it relies on a machine-learning model "trained" on example

conversations (i.e. the stories).

 -81-

Architecture

At first, following the general modeling direction of the MECIS-Bot Server, all the ob-

jects that make up the MECIS-Bot Interaction Engine are subdivided in two independent

packages (i.e. Employees and Patients).

According to Rasa Framework (see Section 4.2.1), the key objects of an Interaction

Engine should be the set of stories that the chatbot can develop, when communicating

with the user. Thus, the architecture of the MECIS-Bot Interaction Engine is essentially

determined by the stories this can execute (see Picture 18).

Picture 18: MECIS-Bot Interaction Engine Architecture

Edit Contact
Info

Edit System
Options

Define Doctor's
Plan (Happy

Path)

Define Doctor's
Plan (Unhappy

Path)

Deactivate User
(Happy Path)

Deactivate User
(Unhappy Path)

Browse Doctors
by Specialty

Make
Appointment

Browse
Appointments

Browse Pending
Appointments

Cancel an
Appointment

-82-

Stories

More specifically, the MECIS-Bot stories are described in the following tables (see Table

2 for Employees and Table 3 for Patients).

Title Code Description

Edit Contact Info STORY-E1 The user-employee is guided to edit the contact info

of the Medical Center

Edit System Options STORY-E2 The user-employee is guided to edit the system op-

tions of the MECIS application

Define Doctor's Plan

(happy path)

STORY-E3 The user-employee is guided to insert the weekly

working schedule of a doctor

Define Doctor's Plan

(unhappy path)

STORY-E4 The user-employee is guided to insert the weekly

working schedule of a doctor but, for unknown rea-

sons, the doctor does not exist (in the database)

Deactivate User

(happy path)

STORY-E5 The user-employee is guided to deactivate a system

user

Deactivate User (un-

happy path)

STORY-E6 The user-employee is guided to deactivate a system

user but for unknown reasons, the user does not exist

(in the database)

Table 2: Stories for Employees

Title Code Description

Browse Doctors by

Specialty

STORY-P1 The user-patient gets - on screen - a list of doctors of a

specialty

Make Appointment STORY-P2 The user-patient makes an appointment

Browse

Appointments

STORY-P3 The user-patient gets - on screen - a list of its appoint-

ments (pending or not)

Browse Pending

Appointments

STORY-P4 The user-patient gets - on screen - a list of its pending

appointments

Cancel an

Appointment

STORY-P5 The user-patient cancels a pending appointment

Table 3: Stories for Patients

 -83-

Intents

The startup event for the execution of each of the above stories is, always, a user request

(i.e. an intent, according to Rasa terminology) [86]. More specifically, the intents that

MECIS-Bot can identify are described in the following tables (see Table 4 for Employees

and Table 5 for Patients, below).

Code Description Starts é

edit_contact_info The user-employee is asking how to edit

the contact info of the Medical Center

STORY-E1

edit_system_options The user-employee is asking how to edit

the system options

STORY-E2

define_plan The user-employee is asking how to de-

fine a doctor's weekly working schedule

STORY-E3,

STORY-E4

deactivate_user The user-employee is asking how to de-

activate a system user

STORY-E5,

STORY-E6

Table 4: Intents for Employee stories

Code Description Startsé

browse_doctors The user-patient requests to see the doc-

tors

STORY-P1

make_appointment The user-patient requests to make an ap-

pointment

STORY-P2

browse_appointments The user-patient requests to see all its ap-

pointments (pending or not)

STORY-P3

browse_pending_appoint-

ments

The user-patient requests to see all its

pending appointments

STORY-P4

cancel_appointment The user-patient requests to cancel an ap-

pointment

STORY-P5

Table 5: Intents for Patient stories

-84-

Actions

During the course of each of the above stories, each user input ends up being executed -

by Rasa - an action [86]. More specifically, the actions that MECIS-Bot can execute are

described in the following tables (see Table 6 for Employees and Table 7 for Patients).

Code Type Description

utter_edit_contact_info Utterance The chatbot indicates the page where the

user-employee can edit the contact info

utter_edit_system_options Utterance The chatbot indicates the page where the

user-employee can edit the system options

utter_find_doctor Utterance The chatbot asks the user-employee to go to

the doctor search page

utter_edit_plan Utterance The chatbot indicates the tool where the

user-employee can specify a doctor's work-

ing schedule

utter_doctor_does_not_exist Utterance The chatbot displays an error message when

the requested doctor does not exist

utter_find_user Utterance The chatbot asks the user-employee to go to

the user search page

utter_edit_user Utterance The chatbot indicates the tool where the

user-employee can edit a user's data

utter_user_does_not_exist Utterance The chatbot displays an error message when

the requested user does not exist

Table 6: Actions for Employee stories

 -85-

Code Type Description

action_browse_doctors Custom The chatbot shows ï on screen ï the doctors of a

specialty

action_browse_appointments Custom The chatbot shows ï on screen ï the appointments

of the current user-patient

action_browse_pending_

appointments

Custom The chatbot shows ï on screen ï the pending ap-

pointments of the current user-patient

appointment_form Form The chatbot activates the making appointment

process

cancel_appointment_form Form The chatbot activates the canceling appointment

process

utter_ask_specialty_text Utterance The chatbot asks for the user-patient to select a

specialty

utter_ask_specialty_unfeat Utterance The chatbot asks for the user-patient to select a

specialty

utter_wrong_specialty_unfeat Utterance The chatbot displays an error message when there

are no available doctors of a specific specialty

utter_wrong_appointment_form Utterance The chatbot displays an error message when there

are no available doctors of a specific specialty

utter_ask_pref_doctor Utterance The chatbot asks the user-patient, when making

an appointment, to accept (or not) the proposed

favorite doctor

utter_ask_doctor Utterance The chatbot asks for the user-patient to select a

doctor

utter_ask_appointment_date Utterance The chatbot asks for the user-patient to select an

appointment date

utter_ask_appointment_time Utterance The chatbot asks for the user-patient to select an

appointment time

utter_ask_appointment Utterance The chatbot asks for the user-patient to select an

appointment

Table 7: Actions for Patient stories

-86-

HTTP API

MECIS-Bot Interaction Engine communicates with MECIS-Bot Client through an HTTP

API. This API is entirely defined and controller by the Rasa Framework. The only thing

that the Bot developer needs to do is to specify, during the implementation phase, the

TCP Port it is "listening" to.

In a conceptual modeling level, this API provides the following basic endpoints:

¶ postMessage

Posts a message to the Interaction Engine, which may represent a user question or

the user response to the last chatbot prompt message.

¶ restart

Terminates the current story-conversation and starts a new one.

MECIS-Bot Actions Engine

Those actions that require code execution to run (i.e. the custom actions and forms con-

tained in Table 6 and Table 7 above) are defined and executed on MECIS-Bot Actions

Engine (see Section 4.2.1).

The Actions Engine has the exclusive ability to communi-

cate with the Database Server. This means that it is possi-

ble to create actions that can exploit, in real time, all the

data of the database.

In addition, it can communicate with any Web Server to

use any kind of Web Services.

The Actions Engine is accessed only by the Interaction Engine and not by the MECIS-

Bot Client. In a sense, it acts like the "actions processor" of the Interaction Engine.

Architecture

Like the Interaction Engine architecture, all the objects that make up the MECIS-Bot Ac-

tions Engine are subdivided in two independent packages (i.e. Employees and Patients).

According to Rasa Framework, the Actions Engine contains the Python code that de-

fines all the custom actions and the forms. There must be a Python class for each custom

action or form. In addition, of course, it may also contain special auxiliary classes.

 -87-

So, the classes that MECIS-Bot Actions Engine contains are shown in Picture 19. It

is important to note that there are no custom actions or forms for Employees. Therefore,

there are no corresponding classes in their package.

Picture 19: MECIS-Bot Actions Engine Architecture (Class Diagram)

DB

+getSpecialtyList()
+getDoctorById(doctorId)
+getAvailSpecialtyList()
+getSpecialtyPayloads()
+getAvailPatientPrefDoctor()
+getDoctorList(specialty)
+getAvailDoctorList(specialty)
+getDoctorPayloads(doctorList)
+getAvailDateList(doctorId)
+getDatePayloads(dateList)
+getAvailTimeList(doctorId, appDate)
+getTimePayloads(timeList)
+getAppointmentList(patientId, penOnly)
+getAppointmentPayloads(appList)
+insertAppointment(appointmentData)
+cancelAppointment(appointmentId)

ActionBrowseDoctors

-name()
-run()

AppointmentForm

-name()

-slot_mappings()
-required_slots()

-validate()
-submit()

CancelAppointmentForm

-name()

-slot_mappings()
-required_slots()

-submit()

ActionBrowseAppointments

-name()
-run()

ActionBrowsePendingAppointments

-name()
-run()

-88-

In particular, the classes that included in Patients package are described in the follow-

ing table (see Table 8).

Class Description

DB It is a common helper class that provides data-

base services

ActionBrowseDoctors It defines the "action_browse_doctors". It

shows ï on screen - the doctors of a specialty.

ActionBrowseAppointments It defines the "action_browse_appointments". It

shows ï on screen ï all the patient's appoint-

ments.

ActionBrowsePendingAppointments It defines the "action_browse_pending_ap-

pointments". It shows ï on screen ï all the pend-

ing patient's appointments.

AppointmentForm It defines the "appointment_form". It executes

all the necessary steps for making an appoint-

ment.

CancelAppointmentForm It defines the "cancel_appointment_form". It

executes all the necessary steps for canceling an

appointment.

Table 8: MECIS-Bot Actions Engine classes for Patients

HTTP API

MECIS-Bot Actions Engine communicates with the Interaction Engine through an HTTP

API. This API is entirely defined and controlled by the Rasa Framework. The only thing

that the Bot developer needs to do is to specify, during the implementation phase, the

TCP Port it is "listening" to.

 -89-

4.4 MECIS-Bot Implementation

The implementation of MECIS-Bot is based solely on open standards, tools and lan-

guages.

4.4.1 MECIS-Bot Client

MECIS-Bot Client is completely implemented on HMTL, JavaScript and CSS. Its source

code is contained inside the parent folder that contains the source code of the whole ME-

CIS application.

MECIS is an application that has been developed as a "NetBeans 8.2" project. The

name of the project is "mecis" and so is called the main folder containing its various

source files.

MECIS-Bot UI

The MECIS-Bot UI component is essentially a JavaScript object called "wppBot" and is

embedded in the broader MECIS client. Its source code is contained in the JavaScript file

"mecis\client\js\wpp.bot.js" where, "mecis" is the main folder that contains the source

code of the whole MECIS application.

 In order to meet the UI requirements deriving from the system modeling principles

(see Section 4.3), the MECIS-Bot UI component is based on the BotUI framework (see

Section 4.2.2). Thus, creating and using an object of the BotUI class, it has total control

over the client area of the chatbot.

In addition, as the MECIS-Bot UI component is responsible for communicating with

the MECIS-Bot Interaction Engine, it has the obligation to access the relevant API. There-

fore, to do this, it relies on AJAX technology.

Summarizing, the MECIS-Bot UI performs the following basic actions:

¶ Displaying messages

¶ Getting user input

¶ Consuming the MECIS-Bot Interaction Engine API

Displaying messages

According to the owner of the message, there are two types of messages that the chatbot

should display: i) chatbot messages and ii) human messages.

-90-

Therefore, in order to show a chatbot message, MECIS-Bot uses the BotUI Message

element as follows:

botui.message.add ({

 content : 'Hello from bot.'

});

In order to show a human message, MECIS-Bot uses the BotUI Message element:

botui.message.add ({

 human: true ,

 content : 'Hello from human.'

});

Getting user input

According to the principles of conversation design (see Section 4.3.1), there are three

types of input UI elements through which data can be entered by the user: i) Text Box ii)

Button Group or iii) Single Selection Dropdown List.

In order to show a Text Box to the user, MECIS-Bot uses the BotUI Text Box element

as follows:

botui.action.text ({

 action : {

 placeholder : ' Your name '

 }

});

In order to show a Button Group to the user, MECIS-Bot uses the BotUI Button Group

element as follows:

botui.action.button ({

 action : [

 { // show a "Yes" button

 text : ' Yes',

 value : ' yes '

 } ,

 { // show a "No" button

 text : ' No',

 value : ' no'

 }

]

})

Finally, in order to show a Single Selection Dropdown List to the user, MECIS-Bot

uses the BotUI Single Selection Dropdown List element as follows:

 -91-

botui.action.select ({

 action : {

 placeholder : "Select Language",

 value : 'TR', // Selected value

 searchselect : false , // to act as a standard dropdown

 label : 'text', // dropdown label variable

 options : [

 {value: "EN", text: "English"},

 {value: "ES", text: "Espa¶ol"},

 {val ue: "TR", text: "T¿rke"},

 {value: "DE", text: "Deutsch"},

 {value: "FR", text: "Franais"},

 {value: "IT", text: "Italiano"},

],

 button : {

 icon: 'check',

 label: 'OK'

 }

 }

})

Consuming the MECIS-Bot Interaction Engine API

Whenever the MECIS-Bot UI has to call a method of the MECIS-Bot Interaction Engine

API it is just makes an AJAX call to the URL of the method. For a typical method, this is

done as follows:

$.ajax ({

 type: 'POST' ,

 url : methodURL,

 contentType : "text/plain; charset=utf - 8",

 data : params,

 success : function (response) {

 // code for success ful call

 éééééééééééééééééééééééééé

 éééééééééééééééééééééééééé

 },

 error : function (response) {

 // code for fail ed call

 éééééééééééééééééééééééééé

 éééééééééééééééééééééééééé

 }

}) ;

-92-

4.4.2 MECIS-Bot Server

In general, the implementation of the MECIS-Bot Server follows the principles and di-

rectives of Rasa framework, as defined by the Rasa documentation [78].

So, according to Rasa, each Rasa project implements two servers:

Á A Rasa (main) Server

It is responsible for the conversation management.

Á A Rasa Actions Server

It defines and executes custom actions and forms.

In addition, according to the system modeling of MECIS-Bot Server (see Section

4.3.4), the MECIS-Bot Server consists of two basic components (i.e. Interaction Engine

and Actions Engine). Each one of them is subdivided in two packages (i.e. Employees

and Patients).

Thus, based on the above facts, two different Rasa projects

must be developed for the implementation of MECIS-Bot

Server, one for employees and one for patients.

Rasa projects

So, the MECIS-Bot Server is derived from two separate Rasa projects each implementing

a set of two Rasa servers.

Rasa project for Employees

It is called "mecis_e_bot" and all of its files are contained inside the "mecis_e_bot"

folder. Actually, it implements the following Rasa servers:

Á Rasa (main) Server for Employees

Á Rasa Actions Server for Employees

Rasa project for Patients

It is called "mecis_p_bot" and all of its files are contained inside the "mecis_e_bot"

folder. Actually, it implements the following Rasa servers:

Á Rasa (main) Server for Patients

Á Rasa Actions Server for Patients

 -93-

MECIS-Bot Interaction Engine

Consequently, the MECIS-Bot Interaction Engine is implemented by the following two

servers.

Rasa (main) Server for Employees

It is configured to listen on TCP Port 5005. It is implemented by the following project

files:

File Project Content

data\nlu.md mecis_e_bot - The definition of the intents that the chatbot

can identify, from the inserted human mes-

sages.

data\stories.md mecis_e_bot - The body of the stories that the chatbot can

develop while interacting with human.

domain.yml mecis_e_bot - The declaration of all the entities, intents

and actions that make up the stories.

- The definition of all the utterance actions.

Rasa (main) Server for Patients

It is configured to listen on TCP Port 5006. It is implemented by the following project

files:

File Project Content

data\nlu.md mecis_p_bot - The definition of the intents that the chatbot

can identify, from the inserted human mes-

sages.

data\stories.md mecis_p_bot - The body of the stories that the chatbot can

develop while interacting with human.

domain.yml mecis_p_bot - The declaration of all the entities, intents

and actions that make up the stories.

- The definition of all the utterance actions.

-94-

MECIS-Bot Actions Engine

Similarly, the MECIS-Bot Actions Engine is implemented by the following two servers.

Rasa Actions Server for Employees

It is configured to listen on TCP Port 5055. It is implemented by the following project

files:

File Project Content

endpoints.yml mecis_e_bot - The definition of the TCP Port in which the

Actions Server listens (i.e. 5055).

actions.py mecis_e_bot - The Python code that defines all the custom

actions (including forms).

Rasa Actions Server for Patients

It is configured to listen on TCP Port 5056. It is implemented by the following project

files:

File Project Content

endpoints.yml mecis_p_bot - The definition of the TCP Port in which the

Actions Server listens (i.e. 5056).

actions.py mecis_p_bot - The Python code that defines all the custom

actions (including forms).

4.5 MECIS-Bot Deployment

As mentioned in previous sections, MECIS-Bot is a kind of add-on to the MECIS appli-

cation. Therefore, for MECIS-Bot to be deployed into a machine, MECIS deployment

must have been preceded (see Section 3.3.9).

However, since the MECIS-Bot Client is a component embedded in the main page of

the MECIS application, the deployment of MECIS-Bot is only concerned with the parts

of the MECIS-Bot Server.

4.5.1 Prerequisites

The following prerequisites must have already been installed on the deployment machine:

V MECIS Application (see Section 3.3.9)

V Anaconda3 64-bit

Anaconda [87] is one of the most popular Python Data Science platforms.

 -95-

V Visual Studio Build Tools (version 2015 or later)

V Rasa Framework 64-bit (version 1.1.8 or later)

It should be noted that, in order for Rasa to be installed on a machine, this machine

must have a Graphics Processing Unit (GPU) [88].

V MySQLdb Pyhon library

MySQLdb is a Python library for accessing MySQL databases. Usually, it is not

included in a standard Anaconda3 installation. The MySQLdb Python can be in-

stalled, using pip, as follows:

pip install mysqlclient

4.5.2 Deployment process

The deployment material of MECIS-Bot Server is contained in the "SourceFiles" folder

that accompanies this thesis document. It consists of the following parts:

Á The "mecis-e-bot" folder that contains the homonymous Rasa project for Em-

ployees.

Á The "mecis-p-bot" folder that contains the homonymous Rasa project for Pa-

tients.

Á The "MECIS-Bot Train .bat" batch file.

Á The "MECIS-Bot.bat" batch file.

So, the following process must be followed for the deployment of the MECIS-Bot

itself:

1. Initially, the above deployment material must be copied, from the "SourceFiles"

folder, into a folder of the deployment machine.

2. Then, using a simple text editor, the word

MECIS-Bot_MASTER_FOLDER_PATH should be replaced, within the files

"MECIS-Bot Train.bat" and "MECIS-Bot.bat", with the actual full path of the

above target folder.

3. Finally, the "MECIS-Bot Train.bat" batch file must be executed in order for the

Rasa projects to be prepared for operation.

-96-

Now, the only thing left to start MECIS-Bot Server is to execute the "MECIS-Bot.bat"

batch file. As a result, the following Rasa Servers will start:

V Rasa (main) Server for Employees

V Rasa Actions Server for Employees

V Rasa (main) Server for Patients

V Rasa Actions Server for Patients

4.6 MECIS-Bot Operation and Experiments

In the software engineering industry, it is well known that one of the best ways to test the

functionality of a computer system is to run a number of indicative test cases. In general,

each test case attempts to verify that the basic or an alternative flow of a system use case

is executed correctly. So, actually, each test case is closely related to a system use case.

 The following test cases are experimenting with the functionality of MECIS-Bot by

performing various variations of the use cases of Section 4.1.

4.6.1 Test Cases for Employees

[UC11/TC1] How to edit the contact info of the medical center?

Title Asking for help to edit the contact info of the medical center

Use case [UC11] Making a typical ñhow-toò question

Execution

Prerequisites

The current user has signed in as an Employee (e.g. admin).

Execution

flow

 -97-

[UC11/TC2] How to deactivate a user ("happy path")?

Title Asking for help to deactivate a user ("happy path")

Use case [UC11] Making a typical ñhow-toò question

Execution

Prerequisites

The current user has signed in as an Employee (e.g. admin).

Execution

flow

-98-

[UC11/TC3] How to deactivate a user ("unhappy path")?

Title Asking for help to deactivate a user ("unhappy path")

Use case [UC11] Making a typical ñhow-toò question

Execution

Prerequisites

The current user has signed in as an Employee (e.g. admin).

Execution

flow

 -99-

4.6.2 Test Cases for Patients

[UC21/TC1] Looking for pathologists

Title Looking for pathologists

Use case [UC21] Looking for doctors

Execution

Prerequisites

¶ The database of MECIS contains one or more pathologists.

¶ The current user has signed in as a Patient (e.g. user).

Execution

flow

-100-

[UC22/TC1] Making an appointment with a pathologist

Title Making an appointment with a pathologist

Use case [UC22] Making an appointment

Execution

Prerequisites

¶ The database of MECIS contains at least two available - for the

current week ï pathologists.

¶ The current user has signed in as a Patient (e.g. user).

Execution

flow

