GR Semicolon EN

Show simple item record

dc.contributor.author
Akcaoğlu, Salih Cem
en
dc.date.accessioned
2016-02-10T10:42:13Z
dc.date.available
2016-02-11T01:00:19Z
dc.date.issued
2016-02-10
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/12432
dc.rights
Default License
dc.title
Voltage And Time Dependence Of The Potential Induced Degradation Effect For Organic, Perovskite and Dye-Sensitized Solar Cells
en
heal.type
masterThesis
el
heal.keywordURI.LCSH
Solar energy
heal.keywordURI.LCSH
Photovoltaic power systems
heal.keywordURI.LCSH
Renewable energy sources
heal.language
en
el
heal.access
free
el
heal.license
http://creativecommons.org/licenses/by-nc/4.0
el
heal.references
References [1] International Energy Agency (2015). International Energy Agency- Statistic Reports. [online] Available at: http://www.iea-pvps.org/index.php?id=32 [Accessed 5 Oct. 2015]. [2] Bennett, I. and Kloos, M. (2011). System Voltage PotentialInduced Degradation Mechanisms in PV Modules and Methods for Test. National Renewable Energy Laboratory. [online] Available at: http://www.nrel.gov/docs/fy11osti/50716.pdf [Accessed 5 Aug. 2015]. [3] Herasimenko, Stanislau Yur'yevich. Large Area Ultra Passivated Silicon Solar Cells Using Heterojunction Carrier Collectors. Arizona State University, 2013. [4] Chapin, D., Fuller, C. and Pearson, G. (1954). A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys., 25(5), p.676. [5] Nrel.gov, (2011). NREL: Photovoltaics Research - Polycrystalline Thin-Film Materials and Devices R&D. [online] Available at: http://www.nrel.gov/pv/thinfilm.html [Accessed 21 Aug. 2015]. [6] Gupta, A., Matulionis, I., Drayton, J. and Compaan, A. (2001). Effect of CdTe thickness reduction in high efficiency CdS/CdTe solar cells. MRS Proc., 668. [7] Pulfrey, D. (1978). Photovoltaic power generation. New York: Van Nostrand Reinhold Co. [8] Sigma-Aldrich, (2015). Organic Photovoltaics (OPV) Tutorial. [online] Available at: https://www.sigmaaldrich.com/materials-science/organic-electronics/opv-tutorial.html [Accessed 21 Aug. 2015]. [9] Reddy, K., Deepak, T., Anjusree, G., Thomas, S., Vadukumpully, S., Subramanian, K., Nair, S. and Nair, A. (2014). On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology. Phys. Chem. Chem. Phys., 16(15), p.6838. [10] Workspace.imperial.ac.uk, (2015). EarlyHistory. [online] Available at: https://workspace.imperial.ac.uk/people/Public/chemistry/Brian%20ORegan/EarlyHistory.html [Accessed 21 Aug. 2015]. [11] Poughon, S. (2013). Photovoltaïque organique : le solaire photovoltaïque sur-mesure de 3 e génération – l’exemple de DisaSolar. Photoniques, (66), pp.42-44. [12] Chuang, C., Brown, P., Bulović, V. and Bawendi, M. (2014). Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Materials, 13(8), pp.796-801. [13] Shockley, W. and Queisser, H. (1961). Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys., 32(3), p.510. [14] Fan, J., Jia, B. and Gu, M. (2014). Perovskite-based low-cost and high-efficiency hybrid halide solar cells. Photon. Res., 2(5), p.111. [15] Habisreutinger, S., Leijtens, T., Eperon, G., Stranks, S., Nicholas, R. and Snaith, H. (2014). Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells. Nano Letters, 14(10), pp.5561-5568. [16] NREL, (2015). Capabilities of the High Voltage Stress Test System at the Outdoor Test Facility. [online] Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.6571&rep=rep1&type=pdf [Accessed 21 Aug. 2015]. [17] TamizhMani, G. (2015). Crystalline Silicon Terrestrial Photovoltaic Cells. [online] Solar America Board for Codes and Standards. Available at: http://www.solarabcs.org/about/publications/reports/pv-cellprocurement/ pdfs/PV_cell.pdf [Accessed 21 Aug. 2015]. [18] Hacke, P., Smith, R., Terwilliger, K., Glick, S., Jordan, D., Johnston, S., Kempe, M. and Kurtz, S. (2013). Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Undergoing Degradation by System Voltage Stress. IEEE Journal of Photovoltaics, 3(1), pp.246-253. [19] Sakamoto, S., Kobayashi, T. and Nonomura, S. (2012). Epidemiological Analysis of Degradation in Silicon Photovoltaic Modules. Jpn. J. Appl. Phys., 51, pp.10NF03. [20] Del Cueto, J. and McMahon, T. (2002). Analysis of leakage currents in photovoltaic modules under highvoltage bias in the field. Prog. Photovolt: Res. Appl., 10(1), pp.15-28. [21] Hara, K., Ichinose, H., Murakami, T. and Masuda, A. (2014). Crystalline Si photovoltaic modules based on TiO 2 -coated cover glass against potential-induced degradation. RSC Adv., 4(83), pp.44291-44295. [22] Berghold, J., Frank, O., Hoehne, H., Pingel, S., Richardson, B. and Winkler, M. (2015). Potential Induced Degradation of solar cells and panels. SOLON CORPORATION, 6950 S. Country Club Rd, Tucson, Arizona 85756. [online] Available at: http://www.solon.com/export/sites/default/solonse.com/_downloads/global/articlepid/ Berghold_et_al_PID_of_Solar_Cells_and_Panels.pdf [Accessed 21 Aug. 2015]. [23] Hacke, P., Terwilliger, K., Glick, S., Tamizhmani, G., Tatapudi, S., Stark, C., Koch, S., Weber, T., -111- Berghold, J., Hoffmann, S., Koehl, M., Dietrich, S., Ebert, M. and Mathiak, G. (2015). Interlaboratory Study to Determine Repeatability of the Damp-Heat Test Method for Potential-Induced Degradation and Polarization in Crystalline Silicon Photovoltaic Modules. IEEE Journal of Photovoltaics, 5(1), pp.94-101. [24] Hacke, P. (2011). System voltage potential-induced degradation mechanisms in PV modules and methods for test. [Golden, CO]: National Renewable Energy Laboratory. [25] Cueto, J. and Rummel, S. (2010). Degradation of photovoltaic modules under high voltage stress in the field. Golden, CO: National Renewable Energy Laboratory. [26] Koch, S., J. Berghold, D. Nieschalk, C. Seidel, O. Okoroafor, S. Lehmann, S. Wendland (2012). Potential Induced Degradation Effects and Tests for Crystalline Silicon Cells. [online] NREL. Available at: http://www1.eere.energy.gov/solar/pdfs/pvmrw12_tuespm_piberlin_koch.pdf [Accessed 21 Aug. 2015]. [27] Möller, H., Jost, N., Fengler, F. and Kaden, T. (2013). Solar Modules Under High External Voltage: Potential Induced Degradation, Leakage Curents and Electrostatic Field. 28th European Photovoltaic Solar Energy Conference and Exhibition, [online] pp.3347-3350. Available at: http://www.eupvsecproceedings. com/proceedings?paper=25983 [Accessed 21 Aug. 2015] [28] Insturments, K. (2015). Measuring Photovoltaic Cell I-V Characteristics with the Model 2420 SourceMeter Instrument. [online] Keithley.com. Available at: http://www.keithley.com/data?asset=4083 [Accessed 4 Nov. 2015]. [29] Nagle, T. (2007). Quantum Effıcıency As A Devıce-Physıcs Interpretatıon Tool For Thın-Fılm Solar Cells. [online] Colorado State University. Available at: http://www2.physics.colostate.edu/groups/photovoltaic /PDFs/Tim Thesis.pdf [Accessed 5 Nov. 2015]. [30] Rubinson, J. and Kayinamura, Y. (2009). Charge transport in conducting polymers: insights from impedance spectroscopy. Chemical Society Reviews, 38(12), p.3339. [31] Hossain, N., Das, S. and Alford, T. (2015). Equivalent Circuit Modification for Organic Solar Cells. CS, 06(06), pp.153-160. [32] Ecker, B. (2015). Stability and degradation mechanisms in organic solar cells. [online] Available at: http://oops.uni-oldenburg.de/1379/1/ecksta12.pdf [Accessed 6 Nov. 2015]. [33] Iwan, A., Boharewicz, B., Tazbir, I., Sikora, A. and Zboromirska-Wnukiewicz, B. (2015). Silver Nanoparticles in PEDOT:PSS Layer for Polymer Solar Cell Application. International Journal of Photoenergy, 2015, pp.1-9. [34] O'Regan, B. and Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), pp.737-740. [35] Sarker, S., Ahammad, A., Seo, H. and Kim, D. (2014). Electrochemical Impedance Spectra of Dye- Sensitized Solar Cells: Fundamentals and Spreadsheet Calculation. International Journal of Photoenergy, 2014, pp.1-17. [36] Yahia, I., Hafez, H., Yakuphanoglu, F., Senkal, B. and Mottaleb, M. (2011). Photovoltaic and impedance spectroscopy analysis of p–n like junction for dye sensitized solar cell. Synthetic Metals, 161(13-14), pp.1299-1305. [37] Zahner, E. (2015). ZAHNER-Elektrik GmbH & CoKG - Germany • Highend Data Acquisition Systems for Electrochemical Applications | IM6. [online] Zahner.de. Available at: http://www.zahner.de/products/electrochemistry/im6.html [Accessed 7 Nov. 20
el
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
el
heal.publicationDate
2016-02-10
heal.tableOfContents
Contents ABSTRACT ........................................................................................................................... III CONTENTS ............................................................................................................................... V NOMENCLATURE .................................................................................................................. VIII 1. INTRODUCTION ........................................................................................................... 1 1.1 CRYSTALLINE SILICON AND CADMIUM TELLURIDE SOLAR MODULES .................................... 2 1.2 OPV (ORGANIC PHOTOVOLTAIC CELL) ........................................................................................... 3 1.3 DYE-SENSITIZED SOLAR CELL (DSSC) ............................................................................................. 4 1.4 QUANTUM DOT SOLAR CELL (QD) ................................................................................................ 5 1.5 PEROVSKITE SOLAR CELL ............................................................................................................. 6 1.6 STUDY OBJECTIVE ....................................................................................................................... 7 1.7 STUDY SCOPE ............................................................................................................................ 7 2. BASIC OF PID PHENOMENA ...................................................................................... 8 2.1 PID EFFECT ............................................................................................................................... 8 2.2 PID DRIVING PARAMETERS .......................................................................................................... 9 2.2.1 Environmental Parameters ........................................................................................... 10 2.2.2 Module Parameters ...................................................................................................... 11 2.2.3 Cell Parameters ............................................................................................................ 11 2.3 LEAKAGE CURRENT ................................................................................................................... 12 2.4 IMPORTANCE OF PID TEST ......................................................................................................... 13 2.4.1 Degradation Under High Voltage ................................................................................. 14 2.5. CELL LEVEL TEST ..................................................................................................................... 15 2.6. MODULE LEVEL TEST ............................................................................................................... 16 2.7. IMPORTANCE OF GROUNDING ................................................................................................... 18 2.8. SYSTEM LEVEL EFFECTS OF PID ................................................................................................. 18 2.9. REASONS SELECTING PID STUDY FIELD ....................................................................................... 20 3. METHODOLOGY ......................................................................................................... 21 3.1 TEST PROCEDURES ................................................................................................................... 21 3.2 TEST EQUIPMENTS ............................................................................................................... 23 3.2.1 Measuring I-V Curve ..................................................................................................... 23 3.2.2 Measuring External Quantum Efficiency ...................................................................... 27 3.2.3 Measuring Impedance and Capacitance ...................................................................... 31 3.2.4 Auxiliary Devices ........................................................................................................... 37 3.3 CELL MANUFACTURING ............................................................................................................. 40 3.3.1 Manufacturing OPV Cells .............................................................................................. 41 3.3.2 Manufacturing Perovskite Solar Cells ........................................................................... 43 3.3.3 Manufacturing Dye-Sensitized Solar Cells .................................................................... 45 3.4 OPV DEGRADATION TEST ........................................................................................................ 49 3.4.1 OPV Voltage Depended Test ....................................................................................... 49 3.4.2 OPV Time Depended Voltage Degradation Test ......................................................... 54 3.4.3 OPV TEMPERATURE, AIR AND 02 PLASMA DEGRADATION .......................................... 60 3.5 PEROVSKITE SOLAR CELL DEGRADATION TEST .............................................................................. 63 3.5.1 Perovskite Solar Cell Voltage Depended Test .............................................................. 63 3.5.2 Perovskite Solar Cell Time Depended Voltage Degradation Test ................................ 70 3.5.3 Perovskite Solar Cell Temperature and Air Degradation .............................................. 77 3.6 DSSC DEGRADATION TEST ....................................................................................................... 81 3.6.1 DSSC Voltage Depended Degradation Test ................................................................. 82 3.6.2 DSCC Temperature Degradation ................................................................................... 86 3.6.3 DSSC Time Depended Voltage Degradation Test .......................................................... 91 vi 4. RESULTS AND COMPARISON ........................................................................................... 100 4.1 I-V COMPARISONS ................................................................................................................. 101 4.2 EXTERNAL QUANTUM EFFICIENCY COMPARISONS ........................................................................ 102 4.3 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY COMPARISONS ..................................................... 104 4.4 CAPACITANCE COMPARISONS ................................................................................................... 106 5. CONCLUSION .................................................................................................................... 108 REFERENCES .......................................................................................................................... 110
en
heal.advisorName
Dr. Martinopoulos, Georgios
en
heal.committeeMemberName
Dr Giannikidis
en
heal.committeeMemberName
Dr. Heracleous
en
heal.academicPublisher
IHU
en
heal.academicPublisherID
ihu
el
heal.numberOfPages
112
el


This item appears in the following Collection(s)

Show simple item record

Related Items