GR Semicolon EN

Show simple item record

dc.contributor.author
Kontotasiou, Vasiliki
en
dc.date.accessioned
2016-02-24T10:01:13Z
dc.date.available
2016-02-25T01:00:14Z
dc.date.issued
2016-02-24
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/12448
dc.rights
Default License
dc.title
Anthropogenic Emissions of Greenhouse Gases and Natural Causes of Climate Change
en
heal.type
masterThesis
en
heal.keywordURI.LCSH
Greenhouse gases.
heal.keywordURI.LCSH
Global warming
heal.keywordURI.LCSH
Greenhouse gases--Environmental aspects
heal.keywordURI.LCSH
Climatic changes
heal.keywordURI.LCSH
Climatic changes--Environmental aspects
heal.language
en
en
heal.access
free
el
heal.license
http://creativecommons.org/licenses/by-nc/4.0
en
heal.references
Adcock, R.J. (1878). A problem in Least Squares. Analyst 5, 53. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (eds.). 2nd International Symposium on Information Theory. Akademini Kiado, Budapest, 267–281. Allen, R.J., N. Nicholls, P.D. Jones and I.J. Butterworth (1991). A further extension of the Tahiti- Darwin SOI, early SOI results and Darwin pressure. Journal of Climate 4, 743–749. Allen, M.R. and S.F.B. Tett (1999). Checking for model consistency in optimal fingerprinting. Climate Dynamics 15, 419–434. Allen, M., N. Gillett, J. Kettleborough, G. Hegerl, R. Schnur, P. Stott, G. Boer, C. Covey, T. Delworth, G. Jones, J. Mitchell and T. Barnett (2006). Quantifying anthropogenic influence on recent near-surface temperature change. Surveys in Geophysics 27(5), 491-544. Ammann, C.M., G.A. Meehl, W.M. Washington and C.S. Zender (2003). A monthly and latitudinally varying volcanic forcing data set in simulations of 20th century climate. Geophysical Research Letters 30 (12), 1657. Andreou, A. and A. Spanos (2003). Statistical adequacy and the testing of trend versus difference stationary. Economic Review 22, 217–237. A.S.L. and Associates (1997). Sulfur Emissions by Country and Year. Report No. DE96014790, U.S. Department of Energy, Washington D.C. Bangash, R.F., A. Passuello, M. Sanchez-Canales, M. Terrado, A. Lopez, F.J. Elorza, G. Ziv, V. Acuna and M. Schuhmacher (2013). Ecosystem services in Mediterranean river basin: Climate change impact on water provisioning and erosion control. Science of the Total Environment, 246–255. Barnett, T.P., K. Hasselmann, M. Chelliah, T. Delworth, G. Hegerl, P. Jones, E. Rasmusson, E. Roeckner, C. Ropelewski, B. Santer and S. Tett (1999). Detecting and Attributing of Recent Climate Change: A Status Report. Bulletin of the American Meteorological Society 80(July), 2631–2659. Battle, M., M. Bender, T. Sowers, P.P. Tans, J.H. Butler, J.W. Elkins, J.T. Ellis, T. Conway, N. Zhang, P. Lang and A.D. Clarke (1996). Atmospheric Gas Concentrations over the Past Century Measured in Air from Firn at the South Pole. Nature 383, 231–235. Beenstock, M., Y. Reingewertz and N. Paldor (2012). Polynomial cointegration tests of anthropogenic impact on global warming. Earth System Dynamics 3(2), 173–188. Benkovitz, C. (1982). Compilation of an inventory of anthropogenic emissions in the United States and Canada. Atmospheric Environment 16, 1551–1563. Berger, A.L. (1978). Long-term variations of daily insolation and quaternary climatic. Journal of Atmospheric Science 35(12), 2362–2367. Bloomfield, P. and D. Nychka (1992). Climate spectra and detecting climate change. Climatic Change 21, 275–287. Boer, G.J., G. Flato, M.C. Reader and D.A. Ramsden (2000). Transient climate change simulation with greenhouse gas and aerosol forcing: experimental design and comparison with the instrumental record for the 20th century. Climate Dynamics 16, 405–425. Bond, T.C., S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, B. Karcher, D. Koch, S.inne, Y. Kondo, P.K. Quinn, M.C. Sarofim, M.G. Schultz, M. Schulz, C. Venkataraman, et al. (2013). Bounding the role of black carbon in the climate system: a scientific assessment. Journal of Geophysical Research- Atmosphere, 118(11), 5380–5552. Boucher, O. and M. Pham (2002). History of sulfate aerosol radiative forcings. Geophysical Research Letters 29(9), 1308. Briffa, K.R. and P.D. Jones (1993). Global surface air temperature variations during the twentieth century: Part 2, implications for large-scale high-frequency paleoclimatic studies. The Holocene 3, 77-88. 80 Brohan, P., J.J. Kennedy, I. Harris, S.F.B. Tett and P.D. Jones (2006). Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. Journal of Geophysical Research 111, D12106. Chung, S.H. and J.H. Seinfeld (2002) Global distribution and climate forcing of carbonaceous aerosols. Journal of Geophysical Research, 107, doi:10.1029/ 2001JD001397. Collins, W., D. Stevenson, C. Johnson and R. Derwent (1997). Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its re- sponse to NOx emission controls. Journal of Atmospheric Chemistry 26, 223–274. Covey, C., K.M. Achutarao, U. Cubasch, P. Jones, S.J. Lambert, M.E. Mann, T.J. Phillips and K.E. Taylor (2003). An overview of results from the Coupled Model Intercomparison Project. Global and Planetary Change 37(1-2), 103– 133. Crowley, T.J. (2000). Causes of climate change over the past 1000 years. Science 289, 270–277. Cubasch, U., K. Hasselmann, H. Hock, E. Maier-Reimer, U. Mikolajewicz, B.D. Santer and R. Sausen (1992). Timedependent greenhouse warming computations with a coupled ocean-atmosphere model. Climate Dynamics 8, 55-69. Cubasch, U., B.D. Santer, A. Hellbach, G. Hegerl, H. Hock, E. Maier-Reimer, U. Mikolajewiez, A. Stossel and R. Voss (1994). Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model. Climate Dynamics 10(1-2), 1–19. Cubasch, U., G.C. Hegerl, A. Hellbach, H. Hock, U. Mikolajewicz, B.D. Santer and R. Voss (1995). A climate change simulation starting from 1935. Climate Dynamics 11, 71-84. Cubasch, U. and G.A. Meehl (2001). Projections of future climate change. In J. Houghton, (eds). Climate Change 2001: The scientific basis. Contribution of working group I of the third assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 526 - 582. Cunnold, D., P. Fraser, R. Weiss, R. Prinn, P. Simmonds, B. Miller, F. Alyea and A. Crawford (1994). Global Trends and Annual Releases of CCl3F and CCl2F2 Estimated from ALE/GAGE and Other Measurements from July 1978 to June 1991. Journal of Geophysical Research 99 (D1), 1107–1126. Cusack, S., J.M. Edwards and J.M. Crowther (1999). Investigating k distribution methods for parameterizing gaseous absorption in the Hadley Centre climate model. Journal of Geophysical Research 104, 2051–2057. Dickey, D. and W. Fuller (1979). Distribution of Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association 74(366), 427–431. Dignon, J. and S. Hameed (1990). Global emissions of nitrogen and sulfur oxides from 1860 to 1980. Journal of Air Pollution Control Association 39, 180–186. Diebold, F.X. and R.S. Mariano (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics 13, 253– 263. Dlugokenchy, E.J., P.M. Lang, K.A. Masarie and L.P. Steele (1994). Global CH4 Record from the NOAA/CMDL Air Sampling Network. In Boden, T. A., D.P. Kaiser, R.J. Sepanski and F.S. Stoss, (eds.), Trends ’93: A Compendium of Data on Global Change, ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 262–266. Edwards, J.M. and A. Slingo (1996). Studies with a flexible new radiation code, I, Choosing a configuration for a largescale model. Qouarterly Journal of the Royal Meteorological Society 122, 689–719. Elliott, G., T.J. Rothenberg and J.H. Stock (1996). Efficient tests for an autoregressive unit root. Econometrica 64, 813– 836. Engle, R.F. and C.W.J. Granger (1987). Co-integration and error correction: representation, estimation and testing. Econometrica 55, 251–276. Enting, I.G., H. Heimann and T.M.L. Wigley (1994). Future emissions and concentrations of carbon dioxide: key ocean/atmosphere/ land analyses. Technical Report 31, Commonwealth Scientific and Industrial Research Organisation, Division of Atmospheric, Melbourne, Australia. 81 Etheridge,D.M., G.I. Pearman and P.J. Fraser (1994). Historical CH4 Record from the “DE08” Ice Core at Law Dome. In Boden, T. A., D.P. Kaiser, R.J. Sepanski and F.S. Stoss, (eds.), Trends ’93: A Compendium of Data on Global Change, ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 256–260. Etheridge, D.M., L.P. Steele, R.L. Langenfelds, R.J. Francey, J.M. Barnola and V.I. Morgan (1996). Natural and Anthropogenic Changes in Atmospheric CO2 over the Last 1000 Years from Air in Antarctic Ice and Firn. Journal of Geophysical Research 101, 4115–4128. Folland, C.K., T.R. Karl and K.Ya, Vinnikov (1990). Observed Climate Variations and Change. In J.T. Houghton et al. (eds.), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, 195-238. Folland, C.K., T.R. Karl, N. Nicholls, B.S. Nyenzi, D.E. Parker and K.Y. Vinnikov (1992). Observed climate variability and change. In Houghton, J.T., B.A. Callander and S.K. Varney (eds.), Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment. Cambridge University Press, Cambridge, UK, 135-170. Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland (2007). Changes in atmospheric constituents and in radiative forcing. In: Solomon S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (eds.) Climate change 2007: The physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 129–234. Fröhlich, C., J. Lean (1998). The Sun’s total irrandiance: Cycles and trends in the past two decades and associated climate change uncertainties. Geophysical Research Lettters 25, 4377–4380. Gay-Garcia, C., F. Estrada and A. Sánchez (2009). Global and hemispheric temperatures revisited. Climatic Change 94(3- 4), 333–349. Geweke, J. and S. Porter-Hudak (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis 4, 221–238. Goldewijk, K.K. (2001). Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochematic Cycles 15, 417–433. Gordon, C., C. Cooper, C.A. Senior, H. Banks, J.M. Gregory, T.C. Johns, J.F.B. Mitchell and R.A. Wood (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16, 147–168. Granger, C.W.J. (1969). Investigating causal relation by econometric models and cross spectral methods. Econometrica 37, 424-438. Gregory, A. and B. Hansen (1996). Residual-based tests for cointegration in models with regime shifts. Journal of Econometrics, 70(1), 99-126. Griggs, D. and M. Noguer (2002). Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Weather 57(8), 267-269. Haldrup, N. (1994). The asymptotics of single-equation cointegration regressions with I (0) and I (0) variables. Journal of Econometrics 63, 151– 181. Hansen, J., M. Sato, A. Lacis, R. Ruedy, I. Tegen and E. Matthews (1998). Perspective: climate forcings in the industrial era. Proceedings of the National Academy of Sciences 95, 12753–12758. Hansen, J., R. Ruedy, J. Glascoe and M. Sato (1999). GISS analysis of surface temperature change. Journal of Geophysical Research 104(30), 997–31,022. Hansen, J., M. Sato, R. Ruedy, P. Kharecha, A. Lacis, R. Miller, L. Nazarenko, K. Lo, G.A. Schmidt et al. (2007). Climate simulations for 1880–2003 with GISS modelE, Climate Dynamics 29, 661–696. Hansen, J., R. Ruedy, M. Sato and K. Lo (2010). Global surface temperature change. Reviews of Geophysics 48(4), p.RG4004. Harvey, A. C. (1989). Forecasting, Structural Time Series Models, and the Kalman Filter, Cambridge University Press, New York. 82 Hasselmann, K. (1979). On the signal-to-noise problem in atmospheric response studies. In D.B. Shaw (ed.). Meteorology Over the Tropical Oceans. Royal Meteorological Society, 251–259. Hasselmann, K. (1993). Optimal fingerprints for the detection of time-dependent climate change. Journal of Climate 6(10), 1957 - 1971. Hegerl, G.C., H. von Storch, K. Hasselmann, B.D. Santer, U. Cubasch and P.D. Jones (1996). Detecting Greenhouse- Gas-Induced Climate Change with an Optimal Fingerprint Method. Journal of Climate, American Meteorological Society 9(10), 2281–2306. Hegerl, G.C., O. Hoegh-Guldberg, G. Casassa, M.P. Hoerling, R.S. Kovats, C. Parmesan, D.W. Pierce and P.A. Stott (2010). Good practice guidance paper on detection and attribution related to anthropogenic climate change. In: Stocker, T.F., C.B. Field, V. Barros, G.K. Plattner, M. Tignor, P.M. Midgley and K.I. Ebi (eds). Meeting report of the intergovernmental panel on climate change expert meeting on detection and attribution of anthropogenic climate change. IPCC Working Group I Technical Support Unit, University of Bern, Bern. Houghton, R.A. and J.L. Hackler (1999). Continental Scale Estimates of the Biotic Carbon Flux from Land Cover Change: 1850 to 1980. NDP-050 Data Set, Carbon Dioxide Information Analysis Center, Oak Ridge, TN, USA. Hoyt, D.V. and K.H.A. Schatten (1993). Discussion of plausible solar irradiance variations. Journal of Geophysical Research 98, 18895–18906. Hurrell, J.W. (1995). Decadal trends in the North Atlantic oscillation: Regional temperature and precipitation. Science 269, 676–679. Intergovernmental Panel on Climate Change (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K. Intergovernmental Panel on Climate Change (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535. Jacobson, M.Z. (2001). Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. Journal of Geophysical Research, 106(D2), 1551–1568. Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12, 231-254. Johansen, S. (1991). Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models. Econometrica 59(6), 1551–1580. Johns, T.C., R.E. Carnell, J.F. Crossley, J.M. Gregory, J.F.B. Mitchell, C.A. Senior, S.F.B. Tett and R.A. Wood (1997). The Second Hadley Centre coupled ocean-atmosphere GCM: model description, spin-up and validation. Climate Dynamics 13, 103–134. Johns, T.C., J.M. Gregory, W.J. Ingram, C.E. Johnson, A. Jones, J.A. Lowe, J.F.B. Mitchell, D.L. et al. (2003). Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate Dynamics 20, 583–612. Jones, P.D., D.H. Lister, T.J. Osborn, C. Harpham, M. Salmon and C.P. Morice (2012). Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research 117. Jones, P.D., T.M.L. Wigley and K.R. Biffa (1994). Global and Hemispheric Temperature Anom- alies – Land and Marine Instrumental Records. In Boden, T.A., D.P. Kaiser, R.J. Sepanski and F.S. Stoss, (eds.). Trends ’93: A Compendium of Data on Global Change, ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, 603–608. Jones, P.D., S.C.B. Raper, R.S. Bradley, H.F. Diaz, P.M. Kelly and T.M.L. Wigley (1986a). Northern Hemisphere surface air temperature variations, 1851-1984. Journal Climate Applied Meteorology 25, 161-179. 83 Jones, P.D. and T.M.L. Wigley (1986b). Southern Hemisphere surface air temperature variations, 1854-1984. Journal Climate Applied Meteorology 25, 1213-1230. Jones, P.D., T.M.L. Wigley and G. Farmer (1991). Marine and land temperature data series: A comparison and look at recent trends. In M.E. Schlesinger (ed.). Greenhouse-Gas-Induced Climatic Change: A Critical Apraisal of Simulations and Observations. Elsevier Science, 593-602. Jones, P.D. and K.R. Briffa (1992). Global surface air temperature variations during the twentief century: Part 1, spatial temporal and seasonal details. The Holocene 2, 165-179. Jones, P.D. (1994a). Recent warming in global temperature series. Geophysical Research Letters 21, 1149-1152. Jones, P.D. (1994b). Hemispheric surface air temperature variations: Are-analysis and an update to 1993. Journal of Climate 7, 1794-1802. Jones, A., D.L. Roberts and M.J. Woodage (1999). The indirect effects of anthropogenic sulphate aerosol simulated using a climate model with an interactive sulphur cycle. HCTN 14, Hadley Centre, Met Office, Bracknell, UK. Jones, P.D. and A. Moberg (2003). Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. Journal of Climate 16, 206–223. Kattenberg, A., F. Giorgi, H. Grassl, G.A. Meehl, J.F.B. Mitchell, R.J. Stouffer, T. Tokioka, A.J. Weaver, T.M.L. Wigley (1996). Climate models - projections of future climate. In : J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell (eds.). Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge. Kaufmann, R.K. and K. Juselius (2013). Testing hypotheses about glacial cycles against the observational record. Paleoceanography 28(1), 175–184. Kaufmann, R.K. and D.I. Stern (1997a). Evidence for human influence on climate from hemispheric temperature relations. Nature, 39–44. Kaufmann, R.K. (2002). Cointegration analysis of hemispheric temperature relations. Journal of Geophysical Research 107(D2). Kaufmann, R.K., H. Kauppi and J.H. Stock (2010). Does temperature contain a stochastic trend? Evaluating conflicting statistical results. Climatic Change 101, 395–405. Kaufmann, R.K., H. Kauppi and J.H. Stock (2006a). Emissions, concentrations, & temperature: A time series analysis. Climatic Change 77(3-4), 249–278. Kaufmann, R.K., H. Kauppi and J.H. Stock (2006b). The relationship between radiative forcing and temperature: What do statistical analyses of the instrumental temperature record measure? Climatic Change 77(3-4), 279–289. Kaufmann, R.K., H. Kauppi, M.L. Mann and J.H. Stock (2011). Reconciling anthropogenic climate change with observed temperature 1998-2008. Proceedings of the National Academy of Sciences of the United States of America 108(29), 11790–11793. Keeling, C.D., R.B. Bacastow, A.F. Carter, S.C. Piper, T.P. Whorf, M. Heimann, W.G. Mook and H. Roeloffzen (1989). A three-dimensional model of atmospheric CO2 transport based on observed winds: 1) Analysis of observational data. In D.H. Peterson (ed.). Aspects of Climate Variability in the Pacific and the Western Americas. American Geophysical Union, Washington, D.C. Keeling, C.D. and T.P. Whorf (1994). Atmospheric CO2 Records from Sites in the SIO Air Sampling Network. In Boden, T.A., D.P. Kaiser, R.J. Sepanski, F.S. Stoss, (eds.). Trends’93: A Compendium of Data on Global Change, ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 16–26. Keeling, R.F., S.C. Piper, A.F. Bollenbacher and S.J. Walker (2009). Atmospheric Carbon Dioxide Record from Mauna Loa. Carbon Dioxide Research Group, Scripps Institution of Oceanography (SIO), University of California, La Jolla, California. Kelly, D.L. (2000). Unit Roots in the Climate : Is the Recent Warming Due to Persistent Shocks ? Working Paper, Department of Economics, University of Miami, Miami, (April). 84 Kennedy, J.J., N.A. Rayner, R.O. Smith, M. Saunby and D.E. Parker (2011a). Reassessing biases and other uncertainties in sea-surface temper- ature observations measured in situ since 1850: 1. Measurement and sampling errors. Journal of Geophysical Research, 116. Kennedy, J.J., N.A. Rayner, R.O. Smith, M. Saunby and D.E. Parker (2011b). Reassessing biases and other uncertainties in sea-surface temperature observations measured in situ since 1850: 2. Biases and homog- enization. Journal of Geophysical Research, 116. Khalil, M.A.K. and R.A. Rasmussen (1994). Global emissions of methane during the last several centuries. Chemosphere 29, 833–842. Kim, D. and P. Perron (2007). Unit root tests allowing for a break in the trend function under both the null and the alternative hypotheses. Unpublished manuscript. Department of Economics, Boston University, Boston, USA. Klimont, Z., S.J. Smith and J. Cofala (2013). The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environmental Research Letters 8, 014003. Knutson, T.R., T.L. Delworth, K.W. Dixon and R.J. Stouffer (1999). Model assessment of regional surface temperature trends (1949–1997). Journal of Geophysical Research 104, 30981–30996. Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin (1992). Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root : How Sure Are We That Economic Time Series Are Nonstationary? Journal of Econometrics 54, 159–178. Lean, J.L., J. Beer and R. Bradley (1995a). Reconstruction of solar irradiance since 1610: implications for climate change. Geophysical Research Letters 22, 3195–3198. Lean, J.L., O.R. White and A. Skumanich (1995b). On the solar ultraviolet spectral irradiance during the Maunder Minimum. Global Biogeochemical Cycles 9, 171–182. Lean, J.L. (2000). Evolution of the sun’s spectral irradiance since the Maunder Minimum. Geophysical Research Letters 27, 2425–2428. Lean, J.L. and D.H. Rind (2008). How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophysical Research Letters 35(18), 1–6. Lean, J. and D. Rind (2009). How will earth’s surface temperature change in future decades. Geophysical Research Letters 36, 1–5. Levitus, S., J.I. Antonov, T.P. Boyer, O.K. Baranova, H.E. Garcia, R.A. Locarnini, A.V. Mishonov, J.R. Reagan, D. Seidov, E.S. Yarosh and M.M. Zweng (2012). World ocean heat content and thermosteric sea level change (0– 2000 m), 1955–2010. Geophysical Research Letters 39(10), L10603. Liu, H. and G. Rodriguez (2005). Human activities and global warming: a cointegration analysis. Environmental Modelling & Software 20(6), 761–773. Lugina, K., P. Groisman, K. Vinnikov, V. Koknaeva and N. Speranskaya (2006). Monthly Surface Air Temperature Time Series Area-Averaged Over the 30-Degree Latitudinal Belts of the Globe. Carbon Dioxide Information Analysis Center (CDIAC) Datasets. Lunkeit, F.R., R. Sausen and J.M. Oberhuber (1995). Climate simulations with the global coupled atmosphere-ocean model ECHAM2/OPYC. Part 1: Present-day climate and ENSO events. Climate Dynamics 12, 195-212. Machida, T., T. Nakazawa, Y. Fujii, S. Aoki and O. Watanabe (1995). Increase in the Atmospheric Nitrous Oxide Concentration during the Last 250 Years. Geophysical Research Letters 22, 2921–2924. Maier-Reimer, E. and K. Hasselmann (1993). Mean circulation of the Humburg LSG model and its sensitivity to the thermohaline surface forcing. Journal of Physical Oceanography 23, 731-757. Manabe, S. and R.J. Stouffer (1996). Low frequency variability of surface air temperature in a 1000 year integration of a coupled ocean-atmosphere model. Journal of Climate 9, 376-393 Mantyka-Pringle, C.S., P. Visconti, M. Di Marco, T.G. Martin, C. Rondinini and J.R. Rhodes (2015). Climate change modifies risk of global biodiversity loss due to land-cover change. Biological Conservation 187, 103–111. 85 Marland, G. and R.M. Rotty (1984). Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950–1982. Tellus 36B, 232–261. Meinshausen, M., S.J. Smith, K. Calvin, J.S. Daniel, M.L.T. Kainuma, J-F. Lamarque et al. (2011). The RCP GHG concentrations and their extension from 1765 to 2300. Climatic Change 109, 213–241. Meyers, S.D., J.J. O’Brien and E. Thelin (1999). Reconstruction of monthly SST in the tropical Pacific Ocean during 1868–1993 using adaptive climate basis functions. Monthly Weather Review 127, 1599–1612. Mitchell, J.F.B., T.C. Johns, J.M. Gregory and S.F.B. Tett (1995). Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 376, 501–504. Mitchell, J.F.B. and T.C. Johns (1997). On modification of global warming by sulphate aerosols. Journal of Climate 10, 245-267. Morice, C.P., J.J. Kennedy, N.A. Rayner and P.D. Jones (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. Journal of Geophysical Research 117, D08101. Nakićenović, N., R. Swart et al. (2000). Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 599. Nicholls, N., G.V. Gruza, J. Jouzel, T.R. Karl, L.A. Ogallo and D.E. Parker (1996). Observed climate variability and change. In Houghton, J.T. et al. (eds.). Climate Change (1995), The Science of Climate Change, Contribution of Working Group I to the Second Assessment of the Intergovernmental Panel of Climate Change (Ch.3) Cambridge University Press, Cambridge, U.K., 138–192. North, G.R, R.E. Cahalan and J.A. Coakley Jr. (1981). Energy balance climate models. Reviews of Geophysics and Space Physics 19, 91–121. Oberhuber, J.M. (1993a). Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnical general circulation model. Part I: Model description. Journal of Physical Oceanography 23, 808-829. Oberhuber, J.M. (1993b). Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnical general circulation model. Part II: Model experiments. Journal of Physical Oceanography 23, 830-845. Orn, G., U. Hansson and H. Rodhe (1996). Historical worldwide emissions of anthropogenic sulfur: 1860–1985. Technological Report CM-91, Stockholm University, Stockholm. Parker, D.E., P.D. Jones, C.K. Folland and A. Bevan (1994). Interdecadal changes of surface temperature since the late nineteenth century. Journal of Geophysical Research 99, 14373-14399. Parrenin, F., V. Masson-Delmotte, P. Kohler, D. Raynaud, D. Paillard, J. Schwander, C. Barbante, A. Landis, A. Wegner and J. Jouzel (2013). Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 330, 1060–1063. Perron, P. (1997). Further evidence on breaking trend functions in macroeconomic variables. Journal of Economics 80(2), 355–385. Phillips, P. and S. Ouliaris (1990). Asymptotic Properties of Residual Based Tests for Cointegration. Econometrica, 58(1), 165. Phillips, P. and P. Perron (1988). Testing for a unit root in a time series with a changing mean. Biometrica 75, 335–346. Pierce, D.W., T.P. Barnett, K.M. AchutaRao, P.J. Gleckler, J.M. Gregory and W.M. Washington (2006). Anthropogenic Warming of the Oceans: Observations and Model Results. Journal of Climate 19(10), 1873-1900. Prather, M., M. McElroy, S. Wofsy, G. Russel and D. Rind (1987). Chemistry of the Global Troposphere: Fluorocarbons as Tracers of Air Motion. Journal of Geophysical Research 92D, 6579–6613. Pretis, F. and D.F. Hendry (2013). Comment on “polynomial cointegration tests of anthropogenic impact on global warming” by Beenstock et al. (2012) - Some hazards in econometric modelling of climate change. Earth System Dynamics 4(2), 375–384. 86 Prinn, R.G., D. Cunnold, P. Fraser, R. Weiss, P. Simmonds, F. Alyea, L.P. Steele and D. Hartley (1997). CDIAC World Data Center Dataset No. DB-1001/R3 (anonymous ftp from cdiac.esd@ornl.gov). Prinn, R.G., D. Cunnold, R. Rasmussen, P. Simmonds, F. Alyea, A. Crawford, P. Fraser and R. Rosen (1990). Atmospheric Emissions and Trends of Nitrous Oxide Deduced from Ten Years of ALE/GAGE Data. Journal of Geophysical Research 95, 18369–18385. Prinn, R.G., R.F. Weiss, P.J. Fraser, P.G. Simmonds, D.M. Cunnold, F.N. Alyea, S. O'Doherty et al. (2000). A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. Geophysical Research 105, 17751-17792. Ramankutty, N. and J.A. Foley (1999). Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13, 997–1027. Ramaswamy, V., S. Ramachandran, G. Stenchikov and A. Robock (2006) A model study of the effect of Pinatubo volcanic aerosols on the stratospheric temperatures. In: Frontiers of Climate Modeling [Kiehl, J.T. and V. Ramanathan (eds.)]. Cambridge University Press, Cambridge, UK, 152–178. Randel, W.J. and F. Wu (1999). A stratospheric ozone trends data set for global modelling studies. Geophysical Research Letters 26, 3089–3092. Roeckner, W.T., K. Arpe, L. Bengtsson, S. Brinkop, L. Dumenil, M. Esch, E. Kirk, F. Lunkeit et al. (1992). Simulation of the present-day climate with the ECHAM model: Impact of nodel physics and resolution. MPI Report No. 93, Max-Planck-Institut fur Meteorologie, 172. Roeckner, E., L. Bengtsson, J. Feichter, J. Lelieveld and H. Rodhe (1999). Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. Journal of Climate 12, 3004–3032. Santer, B.D., T.M.L. Wigley and P.D. Jones (1993). Correlation methods in fingerprint detection studies. Climate Dynamics 8, 265–276. Santer, B.D., K.E. Taylor, T.M.L. Wigley, J.E. Penner, P.D. Jones and U. Cubasch (1995). Towards the detection and attribution of an anthropogenic effect on climate. Climate Dynamics 12(2), 77–100. Sato, M., J.E. Hansen, M.P. McCormick and J.B. Pollack (1993). Stratospheric aerosol optical depths (1850–1990). Journal of Geophysical Research 98, 22987–22994. Schmidt, P. and P. Phillips (1992). LM tests for a unit root in the presence of deterministic trends. Oxford Bulletin of Economics and Statistics 54(3), 257–287. Schwarz, G.E. (1978). Estimating the dimension of a model. Annals of Statistics 6(2), 461–464. Schimel, D., D. Alves, I. Enting, M. Heimann, F. Joos, D. Raynaud, T. Wigley, M. Prather et al. (1995). Radiative forcing of climate change. In Houghton J.T. et al. (eds). Climate Change (1995), The Science of Climate Change, Contribution of Working Group I to the Second Assessment of the Intergovernmental Panel of Climate Change (Ch 2), Cambridge University Press, New York, 65-131. Shine, K.P., R.G. Derwent, D.J. Wuebbles and J.J. Mocrette (1991). Radiative Forcing of Climate, in Houghton, J.T., G.J. Jenkins and J.J. Ephramus, (eds.). Climate Change: The IPCC Scientific Assessment, Cambridge University Press, New York, 47–68. Sims, C. (1980). Macroeconomics and reality. Econometrica 48, 1-49. Smith, S.J., J. van Aardenne, Z. Klimont, R.J. Andres, A. Volke and S. Delgado Arias (2011). Anthropogenic sulfur dioxide emissions: 1850–2005. Atmospheric Chemistry and Physics 11, 1101–1116. Spanos, A. and A. Mcguirk (2002). Where do statistical models come from? The problem of specification uncertainty in empirical modeling. Working Paper, Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Spiro, P.A., D.J. Jacob and J.A. Logan (1992). Global inventory of sulfur emissions in the United States and Canada. Journal of Geophysical Research 97, 6023–6036. Stern, D.I. and R.K. Kaufmann (1996). Estimates of Global Anthropogenic Sulfate Emissions 1860–1993, CEES Working Papers 9601, Center for Energy and Environmental Studies, Boston University, Boston. 87 Stern, D.I. and R.K. Kaufmann (1997a). Time series properties of global climate variables: detection and attribution of climate change. Working Papers in Ecological Economics 9702, 1–37, Centre for Resource and Environmental Studies, Ecological Economics Program, Australian National University, Canberra, Australia. Stern, D.I. and R.K. Kaufmann (1997b). Is there a global warming series in hemispheric temperature series. Working Papers in Ecological Economics 9708, Centre for Resource and Environmental Studies, Ecological Economics Program, Australian National University, Canberra, Australia. Stern, D.I. and R.K. Kaufmann (1999). Econometric analysis of global climate change. Environmental Modelling and Software 14(6), 597–605. Stern, D.I. and R.K. Kaufmann (2000). Temperature Series : a Structural Time Series Analysis. Climatic Change 47(4), 411–438. Stern, D. (2005). Global sulfur emissions from 1850 to 2000. Chemosphere 58, 163–175. Stern, D.I. (2006). An atmosphere–ocean multicointegration model of global climate change. Computational Statistics and Data Analysis 51(2), 1330–1346. Stern, D.I. and R.K. Kaufmann (2014). Anthropogenic and natural causes of climate change. Climatic Change 122(1-2), 257–269. Stock, J. H., and M.W. Watson (1993). A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica 61, 783–820. Stone, D.A. and M.R. Allen (2005). Attribution of global surface warming without dynamical models. Geophysical Research Letters 32(18), 1–4. Stone, D., M. Auffhammer, M. Carey, G. Hansen, C. Huggel, W. Cramer, D. Lobell, U. Molau, A. Solow, L. Tibig and G. Yohe (2013). The challenge to detect and attribute effects of climate change on human and natural systems. Climatic Change 121(2), 381–395. Stott, P.A., S.F.B. Tett, G.S. Jones, M.R. Allen, J.F.B. Mitchell and G.J. Jenkins (2000). External control of twentieth century temperature by natural and anthropogenic causes. Science 290, 2133– 2137. Stott, P. (2003). Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophysical Research Letters 30(14). Stott, P.A., D.A. Stone and M.R. Allen (2004). Human contribution to the European heatwave of 2003. Nature 432, 610-614. Taylor, K.E. and S.J. Ghan (1992). An analysis of cloud liquid water feedback and global climate sensitivity in a general circulation model. Journal of Climate 5, 907–919. Taylor, K.E. and J.E. Penner (1994). Response of the climate system to atmospheric aerosols and greenhouse gases. Nature 369, 734– 737. Tett, S.F.B., G.S. Jones, P.A. Stott, D.C. Hill, J.F.B. Mitchell, M.R. Allen, W.J. Ingram, T.C. Johns, C.E. Johnson, D.L. Roberts, D.M.H. Sexton and M.J. Woodage (2002). Estimation of natural and anthropogenic contributions to twentieth century temperature change. Journal of Geophysical Research: Atmospheres 107(D16), 1-24. Tett, S.F.B., R. Betts, J. Crowley, J. Gregory, T.C. Johns, A. Jones, T.J. Osborn, E. Öström, D.L. Roberts and M.J. Woodage (2007). The impact of natural and anthropogenic forcings on climate and hydrology since 1550. Climate Dynamics 28(1), 3–34. Toda, H.Y. and T. Yamamoto (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of Economics 66, 225–250. Triacca, U. (1998). Non-causality: the role of the omitted variables. Econometric Letters 60, 317-320. Triacca, U. (2001). On the use of Granger causality to investigate the human influence on climate. Theoretical and Applied Climatology 69, 137-138. 88 Walton, J.J., M.C. MacCracken and S.J. Ghan (1988). A global-scale Lagrangian trace species model of transport, transformation and removal processes. Journal of Geophysical Research 93, 8339–8354. Wang, Y.M., J.L. Lean and N.R. Sheeley Jr. (2005). Modeling the Sun’s magnetic field and irradiance since 1713. Astrophysics Journal 625, 522–538. Washington, W., J. Weatherly, G. Meehl, Jr.A. Semtner, T. Bettge, A. Craig, Jr.W. Strand, J. Arblaster, V. Wayland, R. James and Y. Zhang (2000). Parallel climate model (PCM) control and transient simulations. Climate Dynamics 16(10-11), 755-774. Wigley, T. M. L. and S.C.B. Raper (1987). Thermal Expansion of Sea Water Associated with Global Warming. Nature 330, 127-131. Wigley, T.M.L. and S.C.B. Raper (1990a). Natural Variability of the Climate System and Detection of the Greenhouse Effect. Nature 344, 324-327. Wigley, T.M.L. and S.C.B. Raper (1990b). Detection of the Enhanced Greenhouse Effect on Climate. Paper presented at the Second World Climate Conference, Geneva. Wigley, T.M.L. and S.C.B. Raper (1992). Implications for climate and sea level of revised IPCC emissions scenarios. Nature 357, 293–300. Wilson, M.F. and A. Henderson-Sellers (1985). A global archive of land cover and soils data for use in general circulation climate models. Journal of Climatology 5, 119–143. Wolter, K. and M.S. Timlin (1998). Measuring the strength of ENSO: How does 1997/98 rank? Weather 53, 315–324. Zivot, E. and D. Andrews (1992). Further evidence on the Great Crash, the oil price shock, and the unit root hypothesis. Journal of Biodiversity and Environmental Sciences 10(3), 251–270.
EN
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
en
heal.publicationDate
2016-02-23
heal.abstract
This dissertation was written as a part of the MSc in Energy Systems at the International Hellenic University. Climate change is a growing problem, studied extensively during the past few decades, focusing especially on our tampering with the environment. This dissertation attempts to augment the work of Stern and Kaufmann (2014) through several variables’ effects on temperature, with the implementation of more recent econometric techniques. Additionally, it concentrates on possible explanations behind dissimilar, with the aforementioned study, results, as well as on the outcomes’ progression over time. The analysis includes stationarity, cointegration and causality investigation, achieved with more than two tests in each case, between several gases radiative forcings and both HADCRUT4 and GISSv3 temperature time series, through a direct, in both completely and partially aggregated models, as well as through an indirect approach, in an entirely disaggregated model. Four scenarios are tested, and samples lie within the 1850 to 2011 and 1958 to 2011 time span. The investigation of the evolution of all the aforementioned causal relationships in all models and scenarios with time, using the fixed window on a rolling basis method, is considered a novelty as regards the climate change research. Results suggest that total, natural, anthropogenic and Greenhouse Gases’ radiative forcings cause temperature to change, while human induced sulfur emissions, solar irradiance and black carbon do not, throughout the largest part of the time period. Most of this research outcome is consistent with theory and Stern and Kaufmann (2014), with possible minor declination reasons the slightly different approach to Toda Yamamoto causality testing.
en
heal.tableOfContents
ABSTRACT....................................................................................................................................................................................III ACKNOWLEDGEMENTS...................................................................................................................................................... IV LIST OF TABLES....................................................................................................................................................................... VI LIST OF FIGURES................................................................................................................................................................... VII 1. INTRODUCTION................................................................................................................................................................ 1 2. LITERATURE REVIEW....................................................................................................................................................3 2.1. DETECTION AND ATTRIBUTION METHODS.............................................................................................................4 2.1.1. Non – Optimal Approach ................................................................................................................................. 4 2.1.2. Optimal Approach ............................................................................................................................................. 5 2.1.2.1. Optimal Filtering Approach ............................................................................................................................ 5 2.1.2.2. Optimal Fingerprint Approach........................................................................................................................ 5 2.1.2.3. Multiple Linear Regression Analysis............................................................................................................... 9 2.1.2.4. Multivariate Linear Regression Analysis ....................................................................................................... 12 2.1.3. Cointegration Analysis .................................................................................................................................... 14 2.1.3.1. Ordinary Least Squares (OLS) approach. ..................................................................................................... 14 2.1.3.2. Johansen approach. ....................................................................................................................................... 18 2.1.3.3. Polynomial Cointegration ............................................................................................................................. 23 2.2. LITERATURE REVIEW CONCLUSIONS ......................................................................................................................25 2.3. LITERATURE REVIEW SUMMARY ...............................................................................................................................29 3. METHODOLOGICAL FRAMEWORK ......................................................................................................................32 3.1. STATIONARITY TESTS....................................................................................................................................................32 3.1.1. Dickey – Fuller Unit Root Test...................................................................................................................... 33 3.1.2. Augmented Dickey – Fuller Unit Root Test ................................................................................................ 34 3.1.3. ADF – GLS Unit Root Test ............................................................................................................................ 35 3.1.4. Phillips – Perron Unit Root Test ................................................................................................................... 35 3.1.5. KPSS Stationarity Test .................................................................................................................................... 36 3.2. COINTEGRATION ANALYSIS ........................................................................................................................................37 3.2.1. Engle and Granger Cointegration Test ........................................................................................................ 37 3.2.2. Johansen Cointegration Test.......................................................................................................................... 38 3.3. CAUSALITY TESTS ...........................................................................................................................................................41 3.3.1. Granger Causality Test.................................................................................................................................... 41 3.3.2. Toda Yamamoto Causality Test .................................................................................................................... 42 4. DATA SOURCES.................................................................................................................................................................44 4.1. TEMPERATURE ................................................................................................................................................................44 4.1.1. HADCRUT4 ..................................................................................................................................................... 44 4.1.2. GISSv3 ............................................................................................................................................................... 44 4.1.3. Ocean Heat Content........................................................................................................................................ 45 4.2. RADIATIVE FORCING.....................................................................................................................................................45 4.2.1. Carbon Dioxide, Methane, Nitrous Oxide and CFCs ................................................................................ 45 4.2.2. Volcanic Sulfate Aerosols................................................................................................................................ 46 4.2.3. Anthropogenic Sulfur Emissions................................................................................................................... 47 vi 4.2.4. Solar Irradiance, Black and Organic Carbon ............................................................................................... 48 5. EMPIRICAL APPLICATION.........................................................................................................................................49 5.1. STATIONARITY TEST RESULTS ...................................................................................................................................51 5.2. COINTEGRATION ANALYSIS ........................................................................................................................................52 5.2.1. Engle – Granger Cointegration Test Results............................................................................................... 52 5.2.2. Johansen Cointegration Test Results............................................................................................................ 54 5.3. CAUSALITY TEST RESULTS...........................................................................................................................................55 5.3.1. Granger Causality Test Results...................................................................................................................... 55 5.3.3. Rolling Window Results.................................................................................................................................. 64 6. DISCUSSION........................................................................................................................................................................70 7. CONCLUSIONS..................................................................................................................................................................76 REFERENCES .............................................................................................................................................................................78 APPENDICES...............................................................................................................................................................................88 A. TEMPERATURE TIME SERIES DATA CONSTRUCTION AND THE RELATED UNCERTAINTIES .............................88 B. COMPLETELY DISAGGREGATED MODEL CAUSALITY INVESTIGATION ...............................................................89 C. WHAT CHANGES IF THERE IS COINTEGRATION IN MODEL III AND SCENARIO 4 OF MODEL II?........................94 D. ADDITIONAL FIGURES .................................................................................................................................................95 vii List of Tables Table 1 Literature Review Summary Table ......................................................................................................................... 29 Table 2 Stationarity Test Results............................................................................................................................................ 50 Table 3 Order of Integration of each variable as indicated by the majority of the stationarity tests ............... 51 Table 4 Engle and Granger Cointegration Test Results................................................................................................. 52 Table 5 Johansen Cointegration Test Results .................................................................................................................... 53 Table 6 Johansen Cointegration Test Optimal Lag Lengths......................................................................................... 54 Table 7 Granger Causality Test Lag Lengths ..................................................................................................................... 55 Table 8 Granger Causality Test Results (HADCRUT4)................................................................................................. 56 Table 9 Granger Causality Test Results (GISSv3)............................................................................................................ 57 Table 10 Toda Yamamoto Causality Test VAR Lag Lengths ....................................................................................... 60 Table 11 Toda Yamamoto Causality Test Results (HADCRUT4) .............................................................................. 61 Table 12 Toda Yamamoto Causality Test Results (GISSv3)......................................................................................... 62 Table 13 Toda Yamamoto Causality VAR Lag Lengths (Rolling)............................................................................... 64 Table 14 Order of Integration of GHGs as indicated by the majority of the stationarity tests ......................... 83 Table 15 Granger Causality Test Results of Model III with Disaggregated GHGs (VAR) ................................ 84 Table 16 Granger Causality Test Optimal Lag Lengths (VECM)................................................................................ 85 Table 17 Granger Causality Test Results of Model III with Disaggregated GHGs (VECM) ............................ 85 Table 18 Toda Yamamoto Causality Test Results of Model III with Disaggregated GHGs.............................. 86 Table 19 Granger Causality Test Results – VECM.................................................................................................88 List of Figures Figure 1 HADCRUT4, GISSv3 and Ocean Heat Content....................................................................................44 Figure 2 Radiative Forcings of CO2, CH4, N2O, CFC11 and CFC12..................................................................45 Figure 3 Radiative Forcing of Volcanic Sulfate Aerosols ......................................................................................45 Figure 4 Radiative Forcing of Anthropogenic Sulfur Emissions .........................................................................46 Figure 5 Radiative Forcing of Solar Irradiance .......................................................................................................46 Figure 6 Radiative Forcing of Black and Organic Carbon ....................................................................................46 Figure 7 Radiative Forcing of Greenhouse Gases ..................................................................................................47 Figure 8 ........................................................................................................................................................................48 Figure 9 Toda Yamamoto Results (Rolling) ............................................................................................................63 Figure 10 Toda Yamamoto Results (Rolling) ..........................................................................................................64 Figure 11 Toda Yamamoto Results (Rolling)...........................................................................................................65 Figure 12 Toda Yamamoto Results (Rolling) ..........................................................................................................66 Figure 13 Toda Yamamoto Results (Rolling)...........................................................................................................87 Figure 14 Toda Yamamoto Results (Rolling) .........................................................................................................88
en
heal.advisorName
Dergiades, Theologos
en
heal.committeeMemberName
Martinopoulos, Georgios
en
heal.committeeMemberName
Panagiotidis, Theodore
en
heal.academicPublisher
IHU
en
heal.academicPublisherID
ihu
el


This item appears in the following Collection(s)

Show simple item record

Related Items