GR Semicolon EN

Show simple item record

dc.contributor.author
Giannakou, Aikaterini
en
dc.date.accessioned
2016-03-01T10:16:25Z
dc.date.available
2016-03-02T01:00:16Z
dc.date.issued
2016-03-01
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/12460
dc.rights
Default License
dc.title
Experimental and modelling study for the production of hydrogen via a novel intensified sorption enhanced chemical looping methane reforming process.
en
heal.type
masterThesis
el
heal.keywordURI.LCSH
Hydrogen as fuel
heal.keywordURI.LCSH
Hydrogen
heal.keywordURI.LCSH
Chemical engineering--Environmental aspects
heal.keywordURI.LCSH
Renewable energy sources--Environmental aspects
heal.keywordURI.LCSH
Energy security
heal.keywordURI.LCSH
Air--Pollution
heal.keywordURI.LCSH
Chemical engineering--Technological innovations
heal.keywordURI.LCSH
Energy conservation.
heal.keywordURI.LCSH
Fossil fuels
heal.keywordURI.LCSH
Fossil fuels--Combustion--Environmental aspects
heal.keywordURI.LCSH
Climatic changes.
heal.keywordURI.LCSH
Energy consumption--Climatic factors.
heal.language
en
el
heal.access
free
el
heal.license
http://creativecommons.org/licenses/by-nc/4.0
el
heal.references
Bibliography [1] P. P. Edwards, V. L. Kuznetsov, and W. I. F. Da vid, “Hydrogen energy.,” Philos. Trans. A. Math. Phys. Eng. Sci. , vol. 365, no. 1853, pp. 1043–1056, 2007. [2] B. Johnston, M. C. Mayo, and A. Khare, “Hydroge n: the energy source for the 21st century,” Technovation , vol. 25, no. 6, pp. 569–585, 2005. [3] G. W. Crabtree, M. S. Dresselhaus, and M. V Buc hanan, “The Hydrogen Economy,” Phys. Today , no. December, pp. 39–45, 2004. [4] G. Marbán and T. Valdés-Solís, “Towards the hyd rogen economy?,” Int. J. Hydrog. Energ. , vol. 32, pp. 1625–1637, 2007. [5] N. Z. Muradov and T. N. Veziro ǧ lu, “From hydrocarbon to hydrogen-carbon to hydrogen economy,” Int. J. Hydrogen Energy , vol. 30, no. 3, pp. 225–237, 2005. [6] T. I. Sigfusson, “Pathways to hydrogen as an en ergy carrier.,” Philos. Trans. A. Math. Phys. Eng. Sci. , vol. 365, no. 1853, pp. 1025–1042, 2007. [7] C. M. Kalamaras and A. M. Efstathiou, “Hydrogen Production Technologies : Current State and Future Developments,” 2013, vol. 2013. [8] M. V. Twigg, Catalyst Handbook , 2nd ed. London: Wolfe Publishing Ltd, 1989. [9] J. D. Holladay, J. Hu, D. L. King, and Y. Wang, “An overview of hydrogen production technologies,” Catal. Today , vol. 139, no. 4, pp. 244–260, 2009. [10] B. Sorensen, Hydrogen snd Fuel Cells , 2nd ed. Academic Press, 2011. [11] The Linde Group. Steam Reforming [Online]. Ava ilable at: http://www.linde- engineering.com/en/process_plants/hydrogen_and_synt hesis_gas_plants/gas_gen eration/steam_reforming/index.html [Accessed: 2 Dec ember 2015] [12] L. Barelli, G. Bidini, F. Gallorini, and S. Se rvili, “Hydrogen production through sorption-enhanced steam methane reforming and membr ane technology: A review,” Energy , vol. 33, no. 4. pp. 554–570, 2008. [13] C. H. Bartholomew and R. J. Farrauto, Methanol Synthesis . 2006. [14] K. Wawrzinek/ HDV / Nov. 21, Linde AG Linde E ngineering Division 2007 /Industrial H2 Production & Technology.ppt -57- [15] O. Bi č áková and P. Straka, “Production of hydrogen from r enewable resources and its effectiveness,” Int. J. Hydrogen Energy , vol. 37, no. 16, pp. 11563– 11578, 2012. [16] Roads2HyCom. On-site Hydrogen Generators from Hydrocarbons [Online]. Available at: http://www.ika.rwth-aachen.de/r2h/ind ex.php/On- site_Hydrogen_Generators_from_Hydrocarbons.html [Ac cessed: 2 December 2015] [17] Arno A. EVERS FAIR-PR. Production of Hydrogen without electricity from re- newables [Online]. Available at: http://www.hydrogenambassadors.com/background/produ ction-of-hydrogen- without-electricity-from-renewables.php [Accessed: 2 December 2015] [18] M. F. Demirbas, “Hydrogen from Various Biomass Species via Pyrolysis and Steam Gasification Processes,” Energy Sources, Part A Recover. Util. Environ. Eff. , vol. 28, no. 3, pp. 245–252, 2006. [19] K. Tomishige and M. Asadullah, “Production of Syngas by Catalytic Gasification of Biomass at Low Temperature and Synthesis of Clea n Transportation Fuels,” vol. 2, no. 35, pp. 521–523, 2002. [20] M. Ni, D. Y. C. Leung, M. K. H. Leung, K. H. S umathy, “An overview of hydro- gen production from biomass,” Fuel Processing Technology , vol. 87, no.5, pp. 461 – 472, 2006. [21] N. Muradov, “Emission-free fuel reformers for mobile and portable fuel cell applications,” J. Power Sources , vol. 118, no. 1–2, pp. 320–324, 2003. [22] a. Konieczny, K. Mondal, T. Wiltowski, and P. Dydo, “Catalyst development for thermocatalytic decomposition of methane to hydroge n,” Int. J. Hydrogen Energy , vol. 33, no. 1, pp. 264–272, 2008. [23] Agência Regional da Energia e Ambiente da Regi ão Autónoma da Madeira. H2 A ECONOMIADO HIDROGÉNIO [Online]. Available at: http://www.aream.pt/download/brochuras/Brochura_hid rogenio.pdf [Accessed: 2 December 2015] [24] J. Turner, G. Sverdrup, M. K. Mann et al., “Re newable hydrogen production,” Int. J. energy Res. , vol. 32, no. 5, pp. 379–407, 2008. [25] M. Ni, M. Leung, and D. Leung, “Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC), ” Int. J. Hydrogen Energy , vol. 33, no. 9, pp. 2337–2354, 2008. [26] S. A. Gricoriev, V. I. Porembsky, and V. N. Fa teev, “Pure hydrogen production by PEM electrolysis for hydrogen energy,” Int. J. Hydrogen Energy , vol. 31, no. no. 2, pp. 171–175, 2006. -58- [27] D.P. Harrison, “Sorption-enhanced hydrogen pr oduction: a review,” Ind. Eng. Chem. Res. 47 (2008) 6486–6501. [28] M. Rydén and P. Ramos, “H 2 production with CO 2 capture by sorption enhanced chemical-looping reforming using NiO as oxygen carr ier and CaO as CO 2 sorbent,” Fuel Process. Technol. , vol. 96, pp. 27–36, 2012. [29] H. R. Radfarnia and M. C. Iliuta, “Hydrogen p roduction by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bif unctional sorbent– catalyst,” Chem. Eng. Process. Process Intensif. , vol. 86, pp. 96–103, 2014. [30] A. M. Kierzkowska, R. Pacciani, and C. R. Müll er, “CaO-based CO2 sorbents: From fundamentals to the development of new, highly effective materials,” ChemSusChem , vol. 6, no. 7, pp. 1130–1148, 2013. [31] J. Wang, L. Huang, R. Yang, and Z. Zhang, “Rec ent advances in solid sorbents for CO2 capture and new development trends,” Energy Environ. Sci. , pp. 1–41, 2014. [32] J. C. Abanades and D. Alvarez, “Conversion li mits in the reaction of CO2 with lime,” Energy and Fuels , vol. 17, no. 2, pp. 308–315, 2003. [33] C. C. Dean, J. Blamey, N. H. Florin, M. J. Al -Jeboori, and P. S. Fennell, “The calcium looping cycle for CO2 capture from power ge neration, cement manufac- ture and hydrogen production,” Chem. Eng. Res. Des. , vol. 89, no. 6, pp. 836– 855, 2011. [34] P. Xu, M. Xie, Z. Cheng, and Z. Zhou, “CO2 ca pture performance of CaO-based sorbents prepared by a sol-gel method,” Ind. Eng. Chem. Res. , vol. 52, no. 34, pp. 12161–12169, 2013. [35] V. Manovic and E. J. Anthony, “Lime-based sorb ents for high-temperature co2 capture-a review of sorbent modification methods,” Int. J. Environ. Res. Public Health , vol. 7, no. 8, pp. 3129–3140, 2010. [36] A. Antzara, E. Heracleous, and A. a. Lemonido u, “Improving the stability of syn- thetic CaO-based CO2 sorbents by structural promote rs,” Appl. Energy , vol. 156, pp. 331–343, 2015. [37] Z. Zhou, Y. Qi, M. Xie, Z. Cheng, and W. Yuan, “Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture per- formance,” Chem. Eng. Sci. , vol. 74, pp. 172–180, 2012. [38] L. F. de Diego, M. Ortiz, F. García-Labiano, J. Adánez, A. Abad, and P. Gayán, “Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers,” J. Power Sources , vol. 192, no. 1, pp. 27–34, 2009. -59- [39] K. S. Kang, C. H. Kim, K. K. Bae, W. C. Cho, S . H. Kim, and C. S. Park, “Oxy- gen-carrier selection and thermal analysis of the c hemical-looping process for hydrogen production,” Int. J. Hydrogen Energy , vol. 35, no. 22, pp. 12246– 12254, 2010. [40] M. Tang, L. Xu, and M. Fan, “Progress in oxyge n carrier development of me- thane-based chemical-looping reforming: A review,” Appl. Energy , vol. 151, pp. 143–156, 2015. [41] H. Yang, Z. Xu, M. Fan, R. B. Slimane, A. E. B land, and I. Wright, “Progress in carbon dioxide seperation and capture: A review,” v ol. 20, pp. 14–27, 2008. [42] E. Karimi, H.R. Forutan, M. Saidi, M.R. Rahimp our, A. Shariati, Experimental study of chemical-looping reforming in a fixed-bed reactor: performance investi- gation of different oxygen carriers on Al2O3 and Ti O2 support, Energy Fuel 28 (2014) 2811–2820 [43] a. Antzara, E. Heracleous, D. B. Bukur, and a . a. Lemonidou, “Thermodynamic analysis of hydrogen production via chemical loopin g steam methane reforming coupled with in situ CO2 capture,” Int. J. Greenh. Gas Control , vol. 32, pp. 115– 128, 2015. [44] R.H. Perry, D.W. Green, J.O. Maloney, Perry's chemical engineers' handbook, McGraw-Hill, New York (1999). [45] L. Silvester, A. Antzara, G. Boskovic, E. Hera cleous, A. a. Lemonidou, and D. B. Bukur, “NiO supported on Al2O3 and ZrO2 oxygen carr iers for chemical looping steam methane reforming,” Int. J. Hydrogen Energy , vol. 40, no. 24, pp. 7490– 7501, 2015. [46] A. Antzara, E. Heracleous, and A. a. Lemonidou , “Development of CaO-based Mixed Oxides as Stable Sorbents for Post-Combustion CO2 Capture Via Car- bonate Looping,” Energy Procedia , vol. 63, no. November 2015, pp. 2160–2169, 2014. [47] C. S. Martavaltzi and A. a. Lemonidou, “Hydrog en production via sorption enhanced reforming of methane: Development of a nov el hybrid material- reforming catalyst and CO2 sorbent,” Chem. Eng. Sci. , vol. 65, no. 14, pp. 4134– 4140, 2010. [48] B. L. Dutrow, C. M. Clark, X-ray Powder Diffra ction (XRD) [Online]. Available at: http://serc.carleton.edu/research_education/geochem sheets/techniques/XRD.html [Accessed: 2 December 2015] [49] M. Xie, Z. Zhou, Y. Qi, Z. Cheng, and W. Yuan, “Sorption-enhanced steam me- thane reforming by in situ CO2 capture on a CaO–Ca9 Al6O18 sorbent,” Chem. Eng. J. , vol. 207–208, pp. 142–150, 2012. -60- [50] D. K. Lee, I. H. Baek, and W. L. Yoon, “Modeli ng and simulation for the me- thane steam reforming enhanced by in situ CO2 remov al utilizing the CaO car- bonation for H2 production,” Chem. Eng. Sci. , vol. 59, no. 4, pp. 931–942, 2004. [51] C. S. Martavaltzi, E. P. Pampaka, E. S. Korkak aki, and A. a. Lemonidou, “Hy- drogen Production via Steam Reforming of Methane wi th Simultaneous CO 2 Capture over CaO−Ca 12 Al 14 O 33 ,” Energy & Fuels , vol. 24, no. 4, pp. 2589– 2595, 2010
el
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
el
heal.publicationDate
2015-12-11
heal.abstract
H2 is considered as the energy vector of the future due to its clean combustion, resulting in almost no impact on the environment. However H2 is a secondary energy carrier produced mainly through reforming of natural gas, which although a mature process re- mains very energy intensive. Sorption enhanced-chemical looping steam reforming is a novel process for efficient production of pure hydrogen, combining chemical looping steam reforming with in-situ CO 2 capture. In this process, the reformer contains, i n addition to the sorbent, an oxygen transfer material (OTM). In the first step of this cyclic process, the oxide is reduced by CH 4 and serves as the reforming catalyst. The reaction proceeds under near autothermal conditions due to t he heat released by the strongly exo- thermic carbonation reaction of the sorbent. In a second step, the saturated sorbent is regenerated with energy provided by the exothermic OTM re-oxidation. This dissertation was written as a part of my MSc i n Energy Systems at the International Hellenic University. The objective was to evaluate the effect of different operating conditions (temperature, steam/carbon ratio and OTM/sorbent ratio) on the performance of a previously developed optimized NiO-based OTM/catalyst (NiO/ZrO 2 ) and a CaO- based CO 2 sorbent (CaO/CaZrO 3 ) in the novel sorption enhanced steam methane re- forming process combined with chemical looping concept. The experiments were carried out in a bench scale unit in Aristotle University of Thessaloniki, while a thermodynamic analysis of the process was performed using Aspen Plus ® software. Evaluation of the two solids indicated their suitability for the proposed process, with very stable performance under cyclic operation. The combined experiment demonstrated the feasibility and high potential of the novel process. Product concentrations in the outlet of the reformer closely followed the equilibrium at the different studied parameters. During the reforming stage, a very high H 2 concentration was achieved (>95%). During the regeneration stage, the highly exothermic Ni oxidation generates enough heat to increase the reactor’s temperature from 650 to 800°C and supplies up to 45% of the heat required for the regeneration of the sorbent, for a NiO/CaO molar ratio of 0.8. (en)
en
heal.tableOfContents
ABSTRACT .................................................. ................................................... ............ IV ACKNOWLEDGEMENTS .................................................. ......................................... V CONTENTS .................................................. ................................................... ........... VII 1 INTRODUCTION .................................................. ................................................... . 1 1.1 H YDROGEN – I MPORTANCE , U SES AND P RODUCTION ROUTES ........................ 1 1.2 H YDROGEN FROM FOSSIL FUELS .................................................. ..................... 3 1.2.1 Steam reforming (SR) ................................................... ...................... 3 1.2.2 Partial oxidation (POX) .................................................. ..................... 5 1.2.3 Autothermal reforming (ATR) .................................................. .......... 5 1.3 H YDROGEN FROM RENEWABLES .................................................. ..................... 7 1.3.1 Gasification ................................................... ........................................ 7 1.3.2 Pyrolysis .................................................. ............................................. 8 1.3.3 Electrolysis .................................................. ......................................... 8 1.4 I NTENSIFYING NATURAL GAS REFORMING FOR HIGH PURITY HYDROGEN PRODUCTION .................................................. ................................................... ........ 10 1.4.1 Sorption enhanced steam methane reforming (SE-SMR) using CO 2 sorbent ................................................... ................................................. 1 0 1.4.2 Chemical Looping Reforming (CL-R) ............................................. 13 1.4.3 Sorption enhanced chemical looping steam methane re forming (SE-CL-SMR) .................................................. ............................................... 15 1.5 S COPE OF DISSERTATION .................................................. .............................. 16 2 PROCESS SIMULATION STUDY .................................................. .................... 19 2.1 S IMULATION METHODOLOGY .................................................. .......................... 19 2.2 P ROCESS FLOW DIAGRAM .................................................. .............................. 21 2.2.1 Conventional Steam Methane Reforming (SMR) ........................ 21 2.2.2 Sorption Enhanced Chemical-Looping Steam Methane Reforming (SE-CL-SMR) .................................................. ........................... 23 -viii- 2.3 S IMULATION RESULTS .................................................. ................................... 24 2.3.1 Effect of temperature ................................................... ..................... 24 2.3.2 Effect of (S/C) ratio .................................................. ......................... 26 2.3.3 Effect of NiO/CaO ratio .................................................. .................. 28 3 EXPERIMENTAL STUDY .................................................. .................................. 31 3.1 E XPERIMENTAL PART ................................................... .................................... 31 3.1.1 Synthesis ................................................... ......................................... 31 3.1.2 Preliminary evaluation of CO 2 sorbent in Thermogravimetric analyzer (TGA) .................................................. ............................................ 33 3.1.3 Preliminary evaluation of OTM’s catalytic activity under conventional reforming conditions .................................................. ........... 34 3.1.4 Description of fixed bed laboratory unit for activi ty testing ......... 34 3.1.5 Reaction performance evaluation – Operating conditi ons ......... 35 3.1.6 Post reaction characterization of the materials ............................ 36 3.2 R ESULTS AND DISCUSSION ................................................... ........................... 37 3.2.1 Preliminary evaluation of the materials ......................................... 37 3.2.2 Sorption enhanced-chemical looping reforming experi ments: Parametric study .................................................. ......................................... 38 E FFECT OF TEMPERATURE .................................................. ..................................... 39 E FFECT OF S/C RATIO .................................................. ............................................ 43 E FFECT OF OTM/ SORBENT RATIO .................................................. ......................... 45 E FFECT OF RESIDENCE TIME .................................................. .................................. 48 3.2.3 Stability test under SE-CL-SMR conditions .................................. 49 3.2.4 Post-reaction characterization .................................................. ...... 50 4 CONCLUSIONS .................................................. .................................................. 53 BIBLIOGRAPHY .................................................. ................................................... .....56
en
heal.advisorName
Herakleous, Eleni
en
heal.committeeMemberName
Anastaselos, Dimitrios
en
heal.committeeMemberName
Giannakidis, Georgios
en
heal.committeeMemberName
Herakleous, Eleni
en
heal.academicPublisher
IHU
en
heal.academicPublisherID
ihu
el
heal.numberOfPages
68
el


This item appears in the following Collection(s)

Show simple item record

Related Items