GR Semicolon EN

Show simple item record

dc.contributor.author
Kalesiakis, Konstantinos
en
dc.date.accessioned
2015-05-30T13:11:17Z
dc.date.available
2015-09-27T05:56:06Z
dc.date.issued
2015-05-30
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/140
dc.rights
Default License
dc.title
Examine the effect of building height and urban configuration on the performance of roof mounted WTs
en
heal.type
masterThesis
heal.language
en
heal.access
free
el
heal.license
http://creativecommons.org/licenses/by-nc/4.0
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
heal.publicationDate
2014-11
heal.bibliographicCitation
Kalesiakis Konstantinos ,2014, Examine the effect of building height and urban configuration on the performance of roof mounted WTs, Master's Dissertation, International Hellenic University
en
heal.abstract
This dissertation was written as a part of the MSc in ICT Systems at the International Hellenic University. The dissertation tackles the problem of evaluating the wind energy potential within a densely populated and built area. Within those limits the wind conditions present are vastly different compared to a smooth rural area or a terrain over sea. Moreover the measurements available from local, national weather associations or even wind atlases concern mostly rural areas or areas near airports and of course small altitudes over the terrain. The purpose of the dissertation is to construct and demonstrate a model that will exploit these data and calculate the energy potential on the top of a building within the urban environment. An evaluation of a specific wind turbine will be done in order to be able to draw conclusions for the financial feasibility of the installation of such a wind turbine At this point I must thank the supervisor and professor Dr. Giannakidis for his help and patience, during the preparation of the dissertation
en
heal.tableOfContents
ABSTRACT ................................................................................................................. III CONTENTS ................................................................................................................... V INTRODUCTION ............................................................................................................ 1 1 CHAPTER 1 DISTRIBUTED GENERATION ...................................................... 1 1.1 DRIVERS FOR THE RE-EMERGENCE OF DG SYSTEMS, ADVANTAGES AND DISADVANTAGES.......................................................................................................... 1 1.1.1 Environmental Drivers ........................................................................ 1 1.1.2 Regulatory Drivers .............................................................................. 2 1.1.3 Economic Drivers ................................................................................ 2 1.1.4 Advantages .......................................................................................... 2 1.1.5 Limitations and disadvantages .......................................................... 3 1.1.6 Small wind turbines in Distributed Power Generation ................... 4 1.2 URBAN ENVIRONMENT AND ELECTRICITY CONSUMPTION ................................. 5 2 URBAN ENVIRONMENT AND WIND VELOCITY ............................................. 7 2.1 GENERAL LAWS .................................................................................................. 7 2.2 AREA OF INVESTIGATION, THE CITY OF THESSALONIKI ................................... 11 3 CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS .................................... 15 3.1 BASIC NOTIONS THAT DESCRIBE THE FLUID FLOW ........................................... 15 3.2 REYNOLD’S NUMBER ........................................................................................ 16 3.3 REYNOLD’S AVERAGED NAVIER-STOKES EQUATIONS .................................... 16 3.4 TURBULENCE MODELS ..................................................................................... 18 3.4.1 Standard k-ε model ........................................................................... 20 3.4.2 Realizable k-ε model ......................................................................... 22 3.4.3 The k-ω model ................................................................................... 22 3.4.4 Shear Stress Transport model ........................................................ 23 3.4.5 The Reynold’s Stress model ........................................................... 23 -vi- 3.4.6 Other models ..................................................................................... 24 3.4.7 Preliminary choice ............................................................................ 24 4 CHAPTER 4 MESHING ....................................................................................... 27 4.1 NEAR WALL TREATMENT .................................................................................. 27 4.1.1 Wall function ...................................................................................... 27 4.1.2 Near Wall model ............................................................................... 28 4.1.3 Choice of approach .......................................................................... 28 4.2 MESHING FOR A WALL FUNCTION ................................................................... 28 4.3 MESHING FOR THE ROUGHNESS ELEMENTS ................................................... 30 4.4 MESH VERIFICATION ........................................................................................ 31 5 MODEL ................................................................................................................... 33 5.1 MODEL CONSTRUCTION AND DIMENSIONS ...................................................... 33 5.1.1 Building and roughness elements .................................................. 33 5.1.2 Domain’s dimensions ....................................................................... 33 5.1.3 Simulation of an empty domain ...................................................... 34 5.1.4 User Defined functions for empty domain .................................... 35 5.1.5 Mesh construction for the empty domain and results ................. 35 5.1.6 Building and surrounding area........................................................ 37 5.2 SIMULATION RESULTS AND FINAL MODEL CHOICE ........................................... 38 5.2.1 Simulations and graphical results .................................................. 38 5.2.2 Numerical results .............................................................................. 41 6 CHAPTER 6 HAWT CHOICE AND ENERGY YIELD ..................................... 43 6.1 VELOCITY PATTERN AROUND BUILDINGS IN GENERAL-LOCAL ACCELERATION43 6.2 TYPES OF SMALL WIND TURBINES ................................................................... 44 6.2.2 Vertical axis wind turbines ............................................................... 45 6.2.3 Sphere like wind turbines ................................................................ 45 6.3 CONSTRAINS FOR THE CHOICE OF WIND TURBINES FOR AN URBAN ENVIRONMENT .......................................................................................................... 45 6.3.1 Noise ................................................................................................... 45 6.3.2 Danger for resonance ...................................................................... 46 6.3.3 Other constrains................................................................................ 47 6.4 FINAL CHOICE OF A TURBINE ........................................................................... 47 -vii- 6.4.1 Choice and characteristics............................................................... 47 6.4.2 Proper installation ............................................................................. 48 6.4.3 Power coefficient under skewness ................................................. 49 6.5 ENERGY PRODUCTION ..................................................................................... 50 6.5.1 Energy production at 12m, over a smooth terrain ........................ 50 6.5.2 Energy yield at 44m over smooth terrain....................................... 53 6.5.3 Energy production of the turbine installed on the building .......... 53 7 CONCLUSIONS ..................................................................................................... 57 7.1 CONCLUSIONS ABOUT THE ENERGY YIELD ...................................................... 57 7.2 ROUGH ESTIMATION FOR THE COST AND SIMPLE PAYBACK PERIOD ............... 58 7.3 DRAWBACKS AND LIMITATIONS ........................................................................ 58 7.4 VALIDATION ...................................................................................................... 59
en
heal.advisorName
Giannakidis, Prof. Georgios
en
heal.committeeMemberName
Giannakidis, Prof. Georgios
en
heal.academicPublisher
School of Science &Technology, Master of Science (MSc) in Energy Systems
en
heal.academicPublisherID
ihu
heal.numberOfPages
73
heal.fullTextAvailability
true


This item appears in the following Collection(s)

Show simple item record

Related Items