GR Semicolon EN

Show simple item record

dc.contributor.author
Toliou, Katerina
en
dc.date.accessioned
2015-06-03T08:03:26Z
dc.date.available
2015-09-27T05:56:35Z
dc.date.issued
2015-06-03
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/150
dc.rights
Default License
dc.title
“Environmental assessment of electricity production with post-combustion CO2 capture”
en
heal.type
masterThesis
heal.language
en
heal.access
free
el
heal.license
http://creativecommons.org/licenses/by-nc/4.0
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
heal.publicationDate
2014-11
heal.bibliographicCitation
Toliou Katerina,2014 , “Environmental assessment of electricity production with post-combustion CO2 capture”, Master's Dissertation, International Hellenic University
en
heal.abstract
This dissertation was written as a part of the MSc in Energy Systems at the International Hellenic University. Its purpose is to evaluate via Life Cycle Analysis the environmental footprint of ‘carbonate looping’ post-combustion CO2 capture technology in electricity production compared to the more mature post-combustion CO2 capture technology of ‘amine scrubbing’. Carbonate looping is an ex-situ, post-combustion CO2 capture technology in which carbon dioxide from the flue gases is captured by a CaO-based sorbent. CaO carbonation is a highly exothermic process and with proper heat integration of the process, this heat can be employed for the endothermic regeneration process rendering the whole technique nearly autothermal in contrast to the amine scrubbing technology where a significant amount of energy is required to regenerate the saturated amine solution. The environmental performance of a Greek lignite-fired power plant retrofitted with the two post-combustion CO2 capture technologies and the reference scenario with no capture, are examined via life cycle analysis (LCA). The investigated technology of ‘carbonate looping’ is compared with the case of electricity production at a power plant without capture technology and with the case of electricity production with amine scrubbing. The software program of SimaPro was chosen in order to evaluate the footprint of the entire scenarios as well as the extent of the contribution of each life cycle step to the different environmental impact categories and especially the impact category of global warming and reach some conclusions in terms of possible improvements. At this point, I would like to express my sincere gratitude to my supervisor and my professor at International Hellenic University, Dr. Eleni Heracleous, for her invaluable guidance, her constant support and most of all, for her patience throughout my dissertation writing, giving me her precious advices, as well as, I would like to express my thanks to Dr. Georgios Martinopoulos for helping me with the software program. I would also like to thank my husband Giorgo, my son Filippo and the other members of my family, for giving me their support and being patience, throughout the dissertation time period and made possible for me to complete my studies
en
heal.tableOfContents
LIST OF FIGURES ...................................................................................................... VI LIST OF TABLES ...................................................................................................... VIII 1. INTRODUCTION ................................................................................................ - 1 - 1.1 THE GREENHOUSE EFFECT ........................................................................................... - 1 - 1.2 EVOLUTION OF CO2 EMISSIONS AND ORIGIN BY SECTOR ................................................... - 3 - 1.3 ELECTRICITY GENERATION AND ITS CONTRIBUTION TO GHG EMISSIONS IN GREECE ................ - 7 - 1.4 CARBON CAPTURE AND STORAGE (CCS) FOR CO2 MITIGATION ....................................... - 13 - 1.4.1 General ....................................................................................................... - 13 - 1.4.2 Post-combustion CO2 capture with amines ............................................... - 17 - 1.4.3 Post-combustion CO2 capture based on solid CaO-based sorbents ........... - 19 - 1.5 LIFE CYCLE ASSESSMENT (LCA) ................................................................................. - 22 - 1.5.1 General ....................................................................................................... - 22 - 1.5.2 LCA studies for CO2 capture ...................................................................... - 24 - 1.6 OBJECTIVES AND STRUCTURE OF THESIS ....................................................................... - 25 - 2. GOAL AND SCOPE DEFINITION .........................................................................- 27 - 2.1 GOAL ................................................................................................................... - 27 - 2.2 GEOGRAPHICAL FRAMEWORK ................................................................................... - 27 - 2.3 FUNCTIONAL UNIT .................................................................................................. - 28 - 2.4 SOFTWARE ............................................................................................................ - 28 - 2.5. SYSTEM BOUNDARIES ............................................................................................. - 29 - 2.5.1 Case 1: Power plant without CO2 capture technology–reference scenario . - 29 - 2.5.2 Case 2: Power plant with chemical absorption CO2 capture technology .. - 33 - 2.5.3 Case 3: Power plant with carbonate looping CO2 capture ........................ - 35 - 2.6 DATA COLLECTION .................................................................................................. - 35 - 2.7 IMPACT ASSESSMENT METHODOLOGY ......................................................................... - 36 - Abiotic depletion ......................................................................................... - 37 - Acidification ................................................................................................ - 37 - Eutrophication ............................................................................................. - 37 - Global Warming (GWP 100) ....................................................................... - 38 - Ozone layer depletion ................................................................................. - 38 - Human toxicity ............................................................................................ - 38 - Fresh water aquatic eco-toxicity ................................................................. - 38 - Marine aquatic eco-toxicity ........................................................................ - 39 - Terrestrial eco-toxicity ................................................................................ - 39 - Photochemical oxidation ............................................................................ - 39 - v 3. LIFE CYCLE INVENTORY (LCI) ............................................................................- 41 - 3.1 CASE 1: REFERENCE POWER PLANT ............................................................................ - 41 - 3.1.1 Lignite mining ............................................................................................ - 41 - 3.1.2 Lignite transportation ................................................................................ - 43 - 3.1.3 Electricity generation from lignite fired power plant ................................ - 46 - 3.2 CASE 2: POWER PLANT WITH CO2 CAPTURE BY MONOETHANOLAMINE (MEA) ................... - 50 - 3.3 CASE 3: POWER PLANT WITH CO2 CAPTURE BY CARBONATE LOOPING (CAL) ...................... - 54 - 3.3.1 Air Separation Unit (ASU) .......................................................................... - 56 - 3.3.2 Heat Exchanger .......................................................................................... - 57 - 3.3.3 Secondary steam cycle - Heat utilization ................................................... - 58 - 3.3.4. Advantages ............................................................................................... - 60 - 3.3.5 Inventory data for “Carbonate looping” .................................................... - 61 - 4. LIFE CYCLE IMPACT ASSESSMENT (LCIA) ...........................................................- 64 - 4.1 EFFICIENCY ............................................................................................................ - 64 - 4.2 CO2 CAPTURE RATE ................................................................................................ - 65 - 4.3 GLOBAL WARMING POTENTIAL (GWP 100) ................................................................ - 67 - 4.4 ABIOTIC DEPLETION ................................................................................................ - 71 - 4.5 ACIDIFICATION ....................................................................................................... - 73 - 4.6 EUTROPHICATION ................................................................................................... - 76 - 4.7 OZONE LAYER DEPLETION ......................................................................................... - 78 - 4.8 HUMAN TOXICITY ................................................................................................... - 81 - 4.9 FRESH WATER AQUATIC ECO-TOXICITY ........................................................................ - 86 - 4.10 MARINE AQUATIC ECO-TOXICITY POTENTIAL ............................................................... - 89 - 4.11 TERRESTRIAL ECO-TOXICITY POTENTIAL (TEP) ............................................................ - 91 - 4.12 PHOTOCHEMICAL OXIDATION .................................................................................. - 95 - 4.13 OVERALL RESULTS ................................................................................................. - 98 - 4.13.1 Case 1: Electricity production ................................................................... - 98 - 4.13.2 Case 2: Electricity production with MEA .................................................. - 98 - 4.13.3 Case 3: Electricity production with Calcium looping .............................. - 101 - 4.13.4 Overall comparison of the three investigated scenarios ....................... - 102 - 5. INTERPRETATION- CONCLUSION .................................................................... - 105 - BIBLIOGRAPHY .............................................................................................. - 108 -
en
heal.advisorName
Heracleous, Eleni
en
heal.committeeMemberName
Heracleous, Eleni
en
heal.committeeMemberName
Martinopoulos
en
heal.committeeMemberName
Marnellos
en
heal.academicPublisher
School of Science &Technology, Master of Science (MSc) in Energy Systems
en
heal.academicPublisherID
ihu
heal.numberOfPages
124
heal.fullTextAvailability
true


This item appears in the following Collection(s)

Show simple item record

Related Items