GR Semicolon EN

Show simple item record

dc.contributor.author
Nikiforiadis, Loukas
en
dc.date.accessioned
2015-06-03T08:14:39Z
dc.date.available
2015-09-27T05:56:11Z
dc.date.issued
2015-06-03
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/155
dc.rights
Default License
dc.title
Modeling Solar Irradiance
en
heal.type
masterThesis
heal.language
en
heal.access
free
el
heal.license
http://creativecommons.org/licenses/by-nc/4.0
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
heal.publicationDate
2014
heal.bibliographicCitation
Nikiforiadis Loukas ,2014 ,Modeling Solar Irradiance ,Master's Dissertation, International Hellenic University
en
heal.abstract
This dissertation was written as a part of the MSc in Energy Systems from the School of Science and Technology at the International Hellenic University, Thessaloniki, Greece. Renewable energy and especially solar energy has become an integral part of today’s society. Usually data of solar radiation are measured for horizontal surfaces or in sunshine hours, but in this form they are not so useful in engineering applications. This dissertation deals with the issue of converting those data to solar irradiance incident on inclined surfaces and more specifically on vertical surfaces. Solar models are divided into two distinct categories, isotropic and anisotropic models, according to the way they estimate diffused irradiance. Different models have been described from both categories and six of them were analyzed and compared to the actual inclined irradiance and between them. The models included in estimations were those of: Liu-Jordan, Koronakis, Temps-Coulson, Hay-Davies, Perez and Reindl. Also, sunshine solar models were described and a second analysis between one of those, Black model and total horizontal irradiance was held. All meteorological data and information about weather conditions were taken from the meteorological station placed on the roof of a building inside the campus of International Hellenic University. The selected measurements concern an entire year, from 1st September of 2013 until 31st of August 2014 and one month from each season, October, January, April and July, were used in calculations. Furthermore, I would like to thank my supervisor, Dr. G. Martinopoulos, Academic Assistant in International Hellenic University, for the assignment of this dissertation and his valuable assistance throughout the preparation of it.
en
heal.tableOfContents
ABSTRACT ………………………………………………….………………………………... iii CONTENTS …………………………………………………….……………………………... v NOMENCLATURE ……………………………………………………………….…………... ix 1 INTRODUCTION ……………………………………………………………….……...... 1 2 BASIC OF SOLAR ENERGY …………………….…………….…………….……….. 7 2.1 THE SUN ……….………………………………………………………………… 7 2.2 THE SOLAR CONSTANT …………………………………………................. 9 2.3 SOLAR TIME …………………………………………………………………….. 10 2.4 SOLAR ANGLES …………………………………………………………......... 11 2.4.1 Latitude ………………………………..……………………............... 11 2.4.2 Declination …………………………………………………................ 11 2.4.3 Hour Angle …………………………………………………................ 13 2.4.4 Slope …………………………………………………………………… 14 2.4.5 Surface Azimuth Angle …………………………………………........ 14 2.4.6 Zenith Angle ………………………………………………................. 14 2.4.7 Solar Altitude Angle ………………………………………………….. 14 2.4.8 Solar Azimuth Angle …………………………………………………. 15 2.4.9 Angle of Incidence …………………………………………............... 16 2.4.10 Sunrise and Sunset Hours and Day Length ………………………. 16 2.5 SOLAR IRRADIANCE …………………………………………………….......... 18 2.5.1 Distribution and Validation of Extraterrestrial Solar Radiation …. 18 2.5.2 Extraterrestrial Solar Radiation on Horizontal Surfaces …………. 19 2.5.3 Atmospheric Effects and Air Mass ………………………………….. 20 2.5.4 Components of Solar Radiation …………………………………….. 22 2.6 CLEARNESS INDEX ...…………….………………….………………………... 23 2.7 GROUND ALBEDO …………………………………………………................. 24 2.8 EQUIPMENT MEASURING SOLAR IRRADIANCE ………………………… 25 2.8.1 Pyrheliometers …………………………………………………......... 25 -vi- 2.8.2 Pyranometers ………………………………………………………… 27 2.9 EQUIPMENT MEASURING SUNSHINE DURATION ………………………. 29 2.9.1 Campbell–Stokes Sunshine Recorder ……………………………... 30 2.9.2 Foster Sunshine Recorder …………………………………………... 31 3 SOLAR RADIATION MODELS …………..………………………….………………... 33 3.1 CLASSIFICATION OF MODELS ………………………………………………. 33 3.2 BEAM SOLAR RADIATION ……………………………………………………. 35 3.3 DIFFUSED SOLAR RADIATION ………………………………………………. 35 3.3.1 Isotropic Solar Models …………………………….......................... 36 3.3.1.1 Hottel and Woertz Model ……………………………….. 35 3.3.1.2 Liu and Jordan Model …………………………………... 36 3.3.1.3 Orgill and Hollands Model ……………………………… 36 3.3.1.4 Erbs et al. Model ………………………………………… 37 3.3.1.5 Koronakis Model ………………………………………… 37 3.3.1.6 Badescu Model …………………………………............ 38 3.3.2 Anisotropic Solar Models ……………………………………………. 38 3.3.2.1 Bugler Model ……………………………………............. 38 3.3.2.2 Temps and Coulson Model …………………………….. 38 3.3.2.3 Klucher Model …………………………………………… 38 3.3.2.4 Hay and Davies Model …………………………………. 39 3.3.2.5 Willmot Model …………………………........................ 39 3.3.2.6 Ma and Iqbal Model ……………………………............. 40 3.3.2.7 Skartveit and Olseth Model …………………………….. 40 3.3.2.8 Gueymard Model ………………………………………... 41 3.3.2.9 Perez et al. Model ………………………………………. 41 3.3.2.10 Reindl et al. Model ……………………........................ 42 3.3.2.11 Muneer Model …………………………………………... 42 3.3.3 Sunshine Solar Models ………………………………………………. 44 3.3.3.1 Angstrom Model ………………………........................ 44 3.3.3.2 Angstrom and Prescott Model ………......................... 44 3.3.3.3 Black et al. Model ………………………………............. 45 3.4 GROUND REFLECTED SOLAR RADIATION ……………………………….. 45 -vii- 3.4.1 Isotropic Approach …………………………………………………… 46 3.4.2 Temps and Coulson Approach ……………………………………… 46 3.5 STATISTICAL PERFORMANCE INDICATORS ……………………………... 46 3.6 SELECTION OF MODELS ……………………………………………….......... 47 4 METEOROLOGICAL STATION AND DATA COLLECTION …….……….……….. 49 4.1 LOCATION OF METEOROLOGICAL STATION …………………………….. 49 4.2 DATA COLLECTION ……………………………………………………………. 51 4.3 EQUIPMENT OF METEOROLOGICAL STATION ………………………….. 51 4.3.1 Equipment Measuring Solar Irradiance ……………………………. 51 4.3.2 Equipment Measuring Wind Speed and Direction ………………... 53 4.3.3 Equipment Measuring Rainfall ……………………………………… 54 4.3.4 Equipment Measuring Temperature and Relative Humidity …….. 55 5 RESULTS AND COMPARISON OF TESTED SOLAR MODELS ……………...…. 57 5.1 MONTHLY ANALYSIS ………………………………………………………….. 57 5.2 DAILY ANALYSIS ……………………………………………………………….. 67 5.3 MONTHLY ANALYSIS WITH BLACK MODEL ………………………………. 75 6 CONCLUSIONS …………………..……………………………….……………………. 77 REFERENCES ……………………………….……….………………….…………………... 79 APPENDIX A ……………………………….………………………….……………………... 85 APPENDIX B …………………………………………….…………….……………………... 93 APPENDIX C …………………………………………….…………….……………………... 113 APPENDIX D …………………………………………….…………….……………………... 133
en
heal.advisorName
Martinopoulos, G.
en
heal.committeeMemberName
Martinopoulos, G.
en
heal.committeeMemberName
Zachariadis
en
heal.committeeMemberName
Anastaselos
en
heal.academicPublisher
School of Science &Technology, Master of Science (MSc) in Energy Systems
en
heal.academicPublisherID
ihu
heal.numberOfPages
145
heal.fullTextAvailability
true


This item appears in the following Collection(s)

Show simple item record

Related Items