dc.contributor.author
Kalaouzi, Andromachi
en
dc.date.accessioned
2021-08-11T11:23:04Z
dc.date.available
2021-08-11T11:23:04Z
dc.date.issued
2021-08-11
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/29729
dc.rights
Default License
dc.subject
printed catalysts
en
dc.subject
3D printing
en
dc.subject
Energy Applications
en
dc.title
Catalyst Synthesis via 3D printing for Energy Applications
en
heal.type
masterThesis
en_US
heal.dateAvailable
2021-05-11
heal.license
http://creativecommons.org/licenses/by-nc/4.0
en_US
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
en_US
heal.publicationDate
2021-05-11
heal.abstract
This dissertation presented below considers the field of printed catalysts as the main subject of its study. 3D printing is an innovative and unique additive manufacturing technology that without doubt offers a high degree of freedom for the creation of various products. Concerning the chemical engineering sector and catalysis in combination with 3D printing is at a very early stage. The ease of access in low-cost, dependable, efficient and unique catalytic materials will be undoubtedly vital in fabrication of monolith catalysts.
Up to this point, there are not many researches in 3D printed catalysts that can be used in catalytic reactions. In view of this, the ultimate goal of this dissertation is the fabrication, testing and characterization of an inexpensive zeolite-based thermoplastic catalytic material that has been prepared into filament form for direct 3D printing. Results from the dynamic ultra-micro-hardness test as well as analysis with microscope are thoroughly presented in order to fully define the structure along with the mechanical properties of the developed composites. The dynamic test leads to good results, as it thoroughly presented below. This dissertation provides starting points for discussion and further research in the
direct printing of functional catalytic materials.
en
heal.tableOfContents
INTRODUCTION....................................................................................................10
1.1 3D PRINTING & CATALYSIS .............................................................................10
1.2 CARBON DIOXIDE (CO2) TO DIMETHYL ETHER (DME) ..................................11
LITERATURE REVIEW ........................................................................................13
EXPERIMENTAL PART .......................................................................................16
3.1 3D PRINTING TECHNOLOGIES FOR CATALYSIS...............................................16
3.1.1 Printing a Catalyst.............................................................................16
3.1.2 3D printing methods..........................................................................16
3.1.3 Types of catalysts .............................................................................18
3.2 MATERIALS.......................................................................................................18
3.2.1 ABS (Acrylonitrile Butadiene Styrene)...........................................18
3.2.2 Acetone...............................................................................................19
3.2.3 PEG (polyethylene glycol) 2000 .....................................................19
3.2.4 Mix of Catalysts .................................................................................19
3.3 EQUIPMENT ......................................................................................................20
3.3.1 Ultrasonic Processor.........................................................................20
3.3.2 Dry and Heating Oven......................................................................20
3.3.3 Rapid Shredder .................................................................................21
3.3.4 Extruder ..............................................................................................22
3.4 FILAMENT FABRICATION...................................................................................22
3.4.1 1
st Attempt of Laboratory Procedure..............................................23
3.4.2 2
nd Attempt of Laboratory Procedure .............................................28
RESULTS................................................................................................................33
4.1 DYNAMIC MICRO-INDENTATION TEST..............................................................33
4.2 MICROSCOPIC ANALYSIS .................................................................................40
CONCLUSION........................................................................................................45
REFERENCE................................................................................................................46
APPENDIX....................................................................................................................48
-6-
CONTINUING THE PROCESS FOR THE PRINTED CATALYST....................................... 48
en
heal.advisorName
Heracleous, Eleni
en
heal.committeeMemberName
Martinopoulos, Georgios
en
heal.committeeMemberName
Tzetzis, Dimitrios
en
heal.academicPublisher
School of Science and Technology, MSc Energy Ssytems
en
heal.academicPublisherID
ihu
en_US
heal.numberOfPages
48
en_US