dc.contributor.author
Papas, Nikolaos
en
dc.date.accessioned
2015-06-12T14:19:00Z
dc.date.available
2015-09-27T05:57:16Z
dc.date.issued
2015-06-12
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/298
dc.rights
Default License
dc.title
Characterization of an nanoparticle reinforced aluminum alloy under indetation using 3D finite element analysis
en
heal.keyword
Nanostructured materials--Design
en
heal.keyword
Nanostructured materials--Analysis
en
heal.keyword
Nanostructured materials--Computer simulation
en
heal.keyword
Nanostructured materials--Design and construction
en
heal.keyword
Nanotechnology
en
heal.keyword
Finite element method
en
heal.keyword
Finite element method--Computer programs
en
heal.keyword
Dissertations, Academic
en
heal.license
http://creativecommons.org/licenses/by-nc/4.0
heal.recordProvider
School of Economics, Business Administration and Legal Studies, MSc in Strategic Product Design
heal.publicationDate
2014
heal.bibliographicCitation
Papas Nikolaos,2014, Characterization of an nanoparticle reinforced
aluminum alloy under indetation using 3D finite element analysis , Master's Dissertation, International Hellenic University
en
heal.abstract
The thesis investigates a composite material's response to deformation through simulation of
nanoindentation using finite element analysis. The geometry of a metal matrix composite (MMC),
comprising of an aluminum matrix reinforced with silicon carbide (SiC) nanoparticles was modeled with
the use of a mathematical algorithm generated with the help of a parametric CAD software. The
algorithm used the Voronoi diagram to achieve random distribution of particles inside the matrix and
random particle size. The results of the simulation showed an upturn in the composite's mechanical
properties related with the volume percentage of the reinforcement. Increase in particle concentration
lead to increase in the material's ability to resist deformation while converting the aluminum matrix
from isotropic to anisotropic.
2
en
heal.tableOfContents
ABSTRACT.......................................................................................................................................................1
ACKNOWLEDGEMENTS..................................................................................................................................1
1 INTRODUCTION..........................................................................................................................................4
1.1 General Overview....................................................................................................................................4
1.2 Purpose of the Dissertation....................................................................................................................4
1.3 Objective and Expected Results..............................................................................................................5
1.4 Structure of Thesis..................................................................................................................................5
2 LITERATURE REVIEW...................................................................................................................................6
3 METHODOLOGY..........................................................................................................................................9
3.1 Modeling the Voronoi Structure.............................................................................................................9
3.2 Mathematical Model.............................................................................................................................14
3.3 Finite Element Modeling.......................................................................................................................15
4 RESULTS ..................................................................................................................................................19
4.1 Load-displacement................................................................................................................................19
4.2 Effect of volume percentage of particles..............................................................................................20
4.3 Hardness................................................................................................................................................23
5 CONCLUSIONS..........................................................................................................................................24
en
heal.advisorName
Michailidis, Nikolaos
en
heal.committeeMemberName
Mihailidis, Nikolaos
en
heal.committeeMemberName
Kyratsis, Panagiotis
en
heal.committeeMemberName
Tzetzis, Dimitrios
en
heal.academicPublisher
School of Economics & Business Administration ,MSc in Strategic Product Design
en
heal.academicPublisherID
ihu
heal.fullTextAvailability
true