dc.contributor.author
Manoudis, Alexandros
en
dc.date.accessioned
2015-06-16T13:37:13Z
dc.date.available
2015-09-27T05:57:50Z
dc.date.issued
2015-06-16
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/386
dc.rights
Default License
dc.title
Life cycle analysis of energy systems used in residential buildings
en
heal.keyword
Product life cycle--Environmental aspects
en
heal.keyword
Dissertations, Academic
en
heal.license
http://creativecommons.org/licenses/by-nc/4.0
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
heal.publicationDate
2011-09
heal.bibliographicCitation
Manoudis Alexandros, 2011, Life cycle analysis of energy systems used in
residential buildings , Master's Dissertation, International Hellenic University
en
heal.abstract
This dissertation was written as a part of the MSc in Energy Systems at the
International Hellenic University. It focuses on the environmental performance of
energy systems that are used in residential buildings, using the life cycle analysis (LCA)
method. The analysis includes production, disposal and transportation of the materials
used for the manufacturing processes of those systems. The scope of this study is to
collect all common used residential energy systems (heating, cooling, hot water and
electricity production) and analyze and compare their environmental performance.
The continuously growing sustainable development and the direction towards such
policies is the motivation for such studies.
The CML 2 baseline 2000 assessment method (includes ten environmental impact
categories) is used for the evaluation of the systems’ performance and it is applied by
the use of the SimaPro 7 LCA software. The data needed for the analysis is taken from
previous studies, industrial reports and the Ecoinvent database if no other source is
available. The systems assessed are the oil fired and gas fired boiler, the split unit air
conditioner, the mono-Si and poly-Si residential PVs, the flat plate and evacuated tube
solar collectors and the auxiliaries of all those systems. Finally the results are applied in
a real residential building (a four storey apartment building in Thessaloniki) and the
systems are evaluated based on several different scenarios taking into account even
their operation phase.
It was a great pleasure for me the occupation with such an interesting and up-to-date
subject, which may be a great step for the environmental imprinting of the buildings as
a whole. Finally, for the whole cooperation and assistance in all sectors of my study I
want to extremely thank my supervisor Dr. Dimitrio Anastaselo.
en
heal.tableOfContents
ABSTRACT ............................................................................................................................................III
CONTENTS............................................................................................................................................ V
1 INTRODUCTION ..........................................................................................................................- 9 -
2 LITERATURE REVIEW ................................................................................................................- 11 -
2.1 STATE OF THE ART REVIEW .......................................................................................................... - 11 -
2.1.1 Heating systems ....................................................................................................- 11 -
2.1.2 Cooling systems .....................................................................................................- 13 -
2.1.3 Photovoltaics .........................................................................................................- 14 -
2.1.4 Solar collectors ......................................................................................................- 15 -
2.2 IMPORTANCE OF THIS STUDY ....................................................................................................... - 16 -
3 DESCRIPTION OF THE LCA METHOD..........................................................................................- 19 -
3.1 INTRODUCTION......................................................................................................................... - 19 -
3.2 DETERMINATION OF THE SCOPE AND OBJECTIVE OF THE STUDY........................................................... - 22 -
3.2.1 Scope of the study .................................................................................................- 22 -
3.2.2 Objective of the study ...........................................................................................- 23 -
3.2.3 Data quality assessment ........................................................................................- 24 -
3.2.4 Functional unit.......................................................................................................- 25 -
3.2.5 Defining a system ..................................................................................................- 26 -
3.3 DATA INVENTORY...................................................................................................................... - 28 -
3.4 IMPACT ASSESSMENT ................................................................................................................. - 28 -
3.4.1 CML 2 Baseline 2000 .............................................................................................- 29 -
3.4.1.1 Environmental impact categories ........................................................................... - 29 -
3.4.1.2 Assessment method................................................................................................ - 31 -
3.4.2 Cumulative energy demand (CED).........................................................................- 35 -
3.5 ECOINVENT DATABASE ............................................................................................................... - 35 -
3.6 SIMAPRO 7 SOFTWARE .............................................................................................................. - 36 -
4 ENVIRONMENTAL PERFORMANCE OF HEATING SYSTEMS........................................................- 37 -
4.1 INTRODUCTION......................................................................................................................... - 37 -
4.2 BOILER PRODUCTION ................................................................................................................. - 38 -
4.2.1 Integrated system..................................................................................................- 41 -
4.3 DISTRIBUTION SYSTEM ............................................................................................................... - 44 -
vi
4.4 EMISSION SYSTEM .....................................................................................................................- 45 -
4.4.1 Radiators............................................................................................................... - 45 -
4.4.2 Floor heating......................................................................................................... - 46 -
5 ENVIRONMENTAL PERFORMANCE OF COOLING SYSTEMS ....................................................... - 49 -
5.1 INTRODUCTION.........................................................................................................................- 49 -
5.2 AIR CONDITIONER PRODUCTION ...................................................................................................- 50 -
6 ENVIRONMENTAL PERFORMANCE OF PVS ............................................................................... - 55 -
6.1 INTRODUCTION.........................................................................................................................- 55 -
6.2 LCA DATA ...............................................................................................................................- 59 -
6.2.1 Production of mono-Si wafer................................................................................ - 59 -
6.2.2 Production of poly-Si wafer .................................................................................. - 61 -
6.2.3 Production of PV cells ........................................................................................... - 63 -
6.2.4 Production of PV panels ....................................................................................... - 67 -
6.2.5 PV system installation........................................................................................... - 69 -
6.2.5.1 Mounted in flat roof................................................................................................ - 69 -
6.2.5.2 Mounted in sloped roof .......................................................................................... - 71 -
7 ENVIRONMENTAL PERFORMANCE OF SOLAR COLLECTORS...................................................... - 75 -
7.1 INTRODUCTION.........................................................................................................................- 75 -
7.2 FLAT PLATE SOLAR COLLECTOR .....................................................................................................- 77 -
7.3 EVACUATED TUBE SOLAR COLLECTOR.............................................................................................- 80 -
7.4 AUXILIARY EQUIPMENT FOR SOLAR COLLECTORS ..............................................................................- 83 -
7.5 INTEGRATED SYSTEM..................................................................................................................- 85 -
8 CASE STUDY ............................................................................................................................. - 89 -
8.1 INTRODUCTION.........................................................................................................................- 89 -
8.2 DESCRIPTION OF THE BUILDING ....................................................................................................- 89 -
8.2.1 HVAC systems ....................................................................................................... - 90 -
8.2.2 Building Physics..................................................................................................... - 90 -
8.2.3 Other simulation conditions ................................................................................. - 91 -
8.3 SCENARIOS ..............................................................................................................................- 92 -
8.3.1 Base case scenario ................................................................................................ - 93 -
8.3.2 First scenario......................................................................................................... - 93 -
8.3.3 Second scenario .................................................................................................... - 96 -
8.3.4 Heating system and solar collectors (third scenario)............................................ - 98 -
8.3.5 Heating system and PVs (fourth scenario).......................................................... - 101 -
vii
8.3.6 Summary results..................................................................................................- 104 -
9 CONCLUSIONS ........................................................................................................................- 113 -
10 BIBLIOGRAPHY .......................................................................................................................- 115 -
en
heal.advisorName
Anastaselos, Dimitrios
en
heal.committeeMemberName
Papadopoulos, Agis
en
heal.committeeMemberName
Zabaniotou, Anastasia
en
heal.committeeMemberName
Tsoukalas, Eleftherios
en
heal.academicPublisher
School of Science &Technology, Master of Science (MSc) in Energy Systems
en
heal.academicPublisherID
ihu
heal.fullTextAvailability
true