GR Semicolon EN

Show simple item record

dc.contributor.author
Tsirakoglou, Thomas
en
dc.date.accessioned
2015-06-16T14:19:00Z
dc.date.available
2015-09-27T05:57:30Z
dc.date.issued
2015-06-16
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/392
dc.rights
Default License
dc.title
Numerical Simulation of a flat plate collector
en
heal.type
masterThesis
heal.keyword
Solar collectors
en
heal.keyword
Solar energy
en
heal.keyword
Dissertations, Academic
en
heal.language
en
heal.access
free
el
heal.license
http://creativecommons.org/licenses/by-nc/4.0
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
heal.publicationDate
2011-09
heal.bibliographicCitation
Tsirakoglou, Thomas, 2011,Numerical simulation of a flat plate collector, Master's Dissertation, International Hellenic University
en
heal.abstract
This dissertation was written as a part of the MSc in Energy Systems at the International Hellenic University. It deals with the analysis of the operation of flat plate solar collectors which leads to the numerical simulation of their performance. Solar collectors are a widespread means of exploiting solar energy. They are special kinds of heat exchangers that transform solar radiation energy to internal energy of the transport medium. There are different kinds of solar collectors which can be distinguished by their concentration or not, the type of heat transfer liquid used, the temperature range of the working fluid, their and whether they are covered or uncovered. The evaluation of collector performance requires the calculation of the absorbed solar radiation and the heat loss to the surroundings. The equations describing these variables are developed in detail in this dissertation and they constitute the model for the collector numerical simulation. I would like to thank Dr. Georgios Martinopoulos for his concern and advice which helped me accomplish this dissertation.
en
heal.tableOfContents
ABSTRACT .............................................................................................................. IV CONTENTS ............................................................................................................... 1 1 INTRODUCTION .................................................................................................. 3 1.1 GENERAL AIM OF DISSERTATION ................................................................................. 3 1.2 SOLAR ENERGY ....................................................................................................... 3 2 SOLAR THERMAL SYSTEMS ................................................................................. 5 2.1 HISTORY OF EXPLOITATION OF SOLAR ENERGY ............................................................... 5 2.2 MEASUREMENT OF SOLAR RADIATION ......................................................................... 5 2.3 SOLAR THERMAL CAPACITY IN OPERATION WORLDWIDE .................................................. 7 3 TYPES OF SOLAR ENERGY COLLECTORS.............................................................. 10 3.1 FLAT PLATE COLLECTORS ......................................................................................... 12 3.2 EVACUATED TUBE COLLECTORS ...................................................................................... 15 3.3 MATERIALS USED ..................................................................................................... 17 4 SIMULATION OF FLAT PLATE COLLECTOR ................................................................ 21 4.1 SOLAR RADIATION .................................................................................................... 21 4.2 PHYSICAL MODEL FOR FLAT PLATE SOLAR COLLECTORS ............................................................. 23 4.3 ENERGY BALANCE EQUATION ........................................................................................ 24 4.4 ABSORBED SOLAR RADIATION ........................................................................................ 26 4.4.1 Reflection of radiation ......................................................................... 26 4.4.2 Absorption by glazing .......................................................................... 27 4.4.3 Optical properties of cover systems .................................................... 28 4.4.4 Equivalent angles of incidence for diffuse and ground-reflected radiation .......................................................................................................... 29 4.4.5 Transmittance-absorptance product................................................... 29 -2- 4.5 HEAT LOSS FROM COLLECTOR ....................................................................................... 30 4.5.1 Collector overall heat loss ................................................................... 30 4.5.2 Top heat loss through the cover system.............................................. 31 4.5.3 Sky temperature .................................................................................. 33 4.5.4 Wind convection coefficient ................................................................ 33 4.5.5 Natural convection between parallel plates ....................................... 34 4.5.6 Back and edge heat loss ...................................................................... 34 4.5.7 Overall heat loss coefficient ................................................................ 35 4.6 MEAN ABSORBER PLATE TEMPERATURE ............................................................................. 35 4.6.1 Collector efficiency factor .................................................................... 36 4.6.2 Temperature distribution in flow direction ......................................... 38 4.6.3 Collector heat removal factor and flow factor .................................... 39 4.6.4 Mean fluid and plate temperatures .................................................... 40 4.6.5 Forced convection inside of tubes ....................................................... 40 4.7 THERMAL PERFORMANCE OF COLLECTORS .......................................................................... 41 4.8 ALGORITHM OF THE SIMULATION MODEL ........................................................................... 42 5 RESULTS ..................................................................................................................... 44 6 CONCLUSIONS ............................................................................................................ 47 Nomenclature................................................................................................................. 48 Appendix ........................................................................................................................ 52 Bibliography ................................................................................................................... 61
en
heal.advisorName
Martinopoulos, Georgios
en
heal.committeeMemberName
Zachariadis, Theodoros
en
heal.committeeMemberName
Vassiliadis, Nikolaos
en
heal.committeeMemberName
Mitianoudis, Nikolaos
en
heal.academicPublisher
School of Science &Technology, Master of Science (MSc) in Energy Systems
en
heal.academicPublisherID
ihu
heal.numberOfPages
66
heal.fullTextAvailability
true


This item appears in the following Collection(s)

Show simple item record

Related Items