GR Semicolon EN

Show simple item record

dc.contributor.author
Anastasiou, Foteini
en
dc.date.accessioned
2015-06-17T08:28:01Z
dc.date.available
2015-09-27T05:57:49Z
dc.date.issued
2015-06-17
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/393
dc.rights
Default License
dc.title
Solar air conditioning systems for typical dwellings in Greece, as a step towards nearly zero energy buildings.
en
heal.type
masterThesis
heal.generalDescription
Includes bibliographical references
en
heal.keyword
Architecture and energy conservation
en
heal.keyword
Buildings--Energy conservation
en
heal.keyword
Buildings--Environmental engineering
en
heal.keyword
Sustainable construction
en
heal.keyword
Sustainable buildings
en
heal.keyword
Dissertations, Academic
en
heal.language
en
heal.access
free
el
heal.license
http://creativecommons.org/licenses/by-nc/4.0
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
heal.publicationDate
2013-12
heal.bibliographicCitation
Anastasiou, Foteini, 2013, Solar air conditioning systems for typical dwellings in Greece, as a step towards nearly zero energy buildings ,Master's Dissertation, International Hellenic University
en
heal.abstract
This dissertation was written as a part of the MSc in Energy Systems at the International Hellenic University. Its purpose is to evaluate solar combi plus systems in Greek residential buildings, providing in this way a step towards nearly zero energy buildings. The performance of a solar combi plus system for a typical three floor residential building located in four cities (Heraklion, Thessaloniki, Athens, Kastoria) is evaluated. TEE KENAK Software is used for calculating the building’s heating and cooling requirements. These requirements are used in F-Chart method for the initial dimensioning of the system (size of the collector and volume of the tank) for both selective flat plate collectors system and evacuated tube collectors system. The results indicate that the major design parameter is the collector area and that for a given collector area, higher solar fractions can be achieved from evacuated tube collectors. Moreover, Transol was used for the dynamic simulation of the system. The system is composed of a Li-Br absorption chiller, selective flat plate collectors and a gas condensation boiler backup system. The power of both the absorption chiller and the back up boiler is selected so as to cover the peak heating and cooling loads of the building, which are calculated by Elite Software. The results obtained from the simulation system indicate that solar combi plus system can contribute at a large percentage to the reduction of fossil fuel consumption in residential buildings. Finally, for the completion of this dissertation the contribution of Dr Martinopoulos Georgios was valuable and I would like to thank him for his useful guiding and scientific support.
en
heal.tableOfContents
1. INTRODUCTION............................................................................................................... 1 1.1 INTRODUCTION....................................................................................................... 1 1.2 MOTIVATION AND GOAL...................................................................................... 2 2. LITERATURE REVIEW................................................................................................... 5 2.1 GENERAL .................................................................................................................. 5 2.2 SOLAR ENERGY IN EUROPE................................................................................ 5 2.3 SOLAR ENERGY IN GREECE................................................................................. 6 2.4 APPLICATION OF SOLAR ASSISTED HEATING AND COOLING SYSTEMS IN BUILDINGS .......................................................................................................... 7 3. SOLAR COMBI PLUS SYSTEMS FOR BUILDINGS................................................... 9 3.1 SOLAR COMBI PLUS SYSTEMS.......................................................................... 10 3.1.1 SOLAR COLLECTORS .............................................................................. 10 3.1.2 SORPTION CHILLERS .............................................................................. 12 3.2 TYPES OF SOLAR COMBI PLUS SYSTEMS....................................................... 15 3.3 APPLICATIONS OF SOLAR COMBI PLUS SYSTEMS IN GREECE................. 17 4. SIZING OF THE SOLAR COMBI PLUS SYSTEM..................................................... 19 4.1 TEE KENAK SOFTWARE...................................................................................... 19 4.1.1 ASSUMPTIONS OF TEE KENAK SOFTWARE ..................................... 20 4.2 F-CHART METHOD................................................................................................ 21 4.2.1 BASIC EQUATIONS OF THE F-CHART METHOD................................ 21 4.2.2 CORRECTION FACTORS.......................................................................... 24 4.2.2.1 STORAGE CAPACITY CORRECTION FACTOR....................... 24 4.2.2.2 HOT WATER CORRECTION FACTOR....................................... 25 4.2.2.3 LOAD HEAT EXCHANGER SIZE CORRECTION FACTOR .... 25 4.3 ELITE SOFTWARE –CHVAC ............................................................................... 25 5. REFERENCE BUILDING............................................................................................... 27 5.1 BUILDING HEATING AND COOLING REQUIREMENTS ................................ 33 5.2 PARTIAL DIMENSIONING OF THE SYSTEM WITH THE USE OF F-CHART ... ................................................................................................................................... 34 5.2.1 HEATING PERIOD..................................................................................... 35 5.2.2 COOLING PERIOD..................................................................................... 38 5.2.3 MONTHLY HEATING/COOLING LOAD USING F-CHART METHOD... ...................................................................................................................... 39 5.3 5.3 BUILDING HEATING AND COOLING LOADS............................................ 42 6. TRANSIENT SIMULATION .......................................................................................... 44 6.1 SYSTEM CONFIGURATION AND MODELLING............................................... 44 6.2 SIMULATION.......................................................................................................... 46 6.3 BUILDING PARAMETERS .................................................................................... 48 6.3.1 HEATING .................................................................................................... 48 6.3.2 PROPRTIES OF THE BUILDING.............................................................. 51 6.3.3 HEATING AND COOLING........................................................................ 52 iii 6.3.4 GAINS AND LIGHTING............................................................................ 52 6.4 SOLAR COLLECTOR ............................................................................................. 54 6.5 SOLAR STORAGE TANK-HEAT EXCHANGER................................................. 56 6.6 HYDRAULIC AUXILIARY SYSTEM AND STORAGE ...................................... 57 6.7 COOLING SYSTEM................................................................................................ 59 6.7.1 THERMALLY DRIVEN CHILLER ........................................................... 59 6.7.2 COOLING TOWER..................................................................................... 60 6.7.3 COLD STORAGE TANK............................................................................ 60 6.8 DOMESTIC HOT WATER CONSUMPTION ....................................................... 61 6.9 SOLAR DISTRIBUTION LOOP AND PUMPS...................................................... 62 6.10 CONNTROL FUNCTIONS...................................................................................... 66 6.10.1 SOLAR LOOP CONTROL.......................................................................... 66 6.10.2 COOLING CONTROL ................................................................................ 67 6.11 RESUSLTS AND DISCUSSION............................................................................. 68 6.11.1 HEATING/COOLING AND DHW DEMANDS ........................................ 68 6.11.2 ENERGETIC RESULTS.............................................................................. 70 6.11.3 SYSTEM EFFICIENCY-LOSSES .............................................................. 70 7. CONCLUSIONS................................................................................................................ 73 APPENDIX A.......................................................................................................................... 75 APPENDIX B.......................................................................................................................... 79 REFERENCES ....................................................................................................................... 90
en
heal.advisorName
Martinopoulos, Giorgos
en
heal.committeeMemberName
Martinopoulos
en
heal.committeeMemberName
Tompoulidis
en
heal.committeeMemberName
Giannakidis
en
heal.academicPublisher
School of Science &Technology, Master of Science (MSc) in Energy Systems
en
heal.academicPublisherID
ihu
heal.numberOfPages
99
heal.fullTextAvailability
true


This item appears in the following Collection(s)

Show simple item record

Related Items