GR Semicolon EN

Show simple item record

dc.contributor.author
Nikolaou, Christoforos
en
dc.date.accessioned
2015-06-17T09:04:10Z
dc.date.available
2015-09-27T05:56:38Z
dc.date.issued
2015-06-17
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/397
dc.rights
Default License
dc.title
Use of solar combi systems and solar cooling and air-conditioning in residential buildings
en
heal.type
masterThesis
heal.keyword
Architecture and energy conservation
en
heal.keyword
Buildings--Energy conservation
en
heal.keyword
Buildings--Environmental engineering
en
heal.keyword
Sustainable construction
en
heal.keyword
Sustainable buildings
en
heal.keyword
Dwellings--Heating and ventilation
en
heal.keyword
Dwellings--Air conditioning
en
heal.keyword
Dissertations, Academic
en
heal.language
en
heal.access
free
el
heal.license
http://creativecommons.org/licenses/by-nc/4.0
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
heal.publicationDate
2013-11
heal.bibliographicCitation
Nikolaou Christoforos, 2013, Use of solar combi systems and solar cooling and air-conditioning in residential buildings,Master's Dissertation ,International Hellenic University
en
heal.abstract
This dissertation was written in the context of the MSc in Energy Systems of the International Hellenic University. As a main objective, the dissertation examines the use of an integrated so-lar system (solar combi+ system), for the provision of environmentally friendly DHW, heating, and air-conditioning services in residential buildings. Although still in an initial market stage, the solar combi+ system is considered by many a very promising concept that can eventually alter the whole market of the conventional HVAC and DHW systems. For the purpose of this thesis much research has been initially conducted on the existing litera-ture and several projects curried out by the E.U. providing an overview of the market of the so-lar thermal systems and a brief description of the various system components and configura-tions. In order to find the potential of the solar combi+ systems to cover the DHW, heating and cool-ing loads, a number of energy simulations were then curried out using the Polysun V. 6.1 simu-lation software. The simulations refer to a solar combi+ system installed on a typical detached house in the region of Rapperswill, a small Swiss town near Zurich. Two main parameters where studied, namely the solar collector surface and the storage tank volume in an effort to find the combination of the two parameters that would maximize the solar contribution. Τhe study is also extended to other simulation scenarios, trying to cover a wide range of possible cases and is supplemented by a financial and a parametric analysis in order to evaluate the eco-nomic feasibility of such a system. The analysis conducted confirmed the great potential of the solar combi+ system, providing high solar fractions and considerably primary energy savings. However, the economics of the system appeared at the time of this study dubious, at least for the maritime temperate climate of the town of Rapperswill.
en
heal.tableOfContents
ABSTRACT................................................................................................................................ iii ACKNOWLEDGEMENTS......................................................................................................... v CONTENTS............................................................................................................................... vii LIST OF FIGURES ................................................................................................................... xi 1 INTRODUCTION................................................................................................................... 1 1.1 Background .................................................................................................................... 1 1.2 Problem definition.......................................................................................................... 2 1.3 Aim of thesis................................................................................................................... 3 1.4 Structure of thesis.......................................................................................................... 4 2 OVERVIEW............................................................................................................................ 7 2.1 Solar thermal market..................................................................................................... 7 2.2 Solar combisystems .................................................................................................... 10 2.2.1 General characteristics of solar combisystems............................................... 10 2.2.2 Solar combisystems classification..................................................................... 12 2.3 Solar cooling................................................................................................................. 14 2.3.1 Solar cooling processes...................................................................................... 15 2.3.2 Solar cooling market development.................................................................... 16 2.4 Solar combi+ systems................................................................................................. 18 3 DESCRIPTION OF SYSTEMS AND COMPONENTS.................................................. 21 3.1 Heat production subsystem ....................................................................................... 21 3.1.1 Solar collectors..................................................................................................... 21 3.1.2 Auxiliary heat source........................................................................................... 27 3.1.3 Heat storage ......................................................................................................... 28 3.2 Cold production subsystem........................................................................................ 29 vii 3.2.1 Closed cycles - Chillers....................................................................................... 31 3.2.2 Open cycles - Desiccant systems...................................................................... 34 3.2.3 Cold storage.......................................................................................................... 35 3.2.4 Auxiliary vapor compression chiller ................................................................... 37 3.2.5 Cooling towers...................................................................................................... 37 3.3 Heat distribution systems ........................................................................................... 38 3.3.1 Air distribution system ......................................................................................... 38 3.3.2 Water distribution system.................................................................................... 39 4 LITERATURE REVIEW...................................................................................................... 43 4.1 Solar combisystems .................................................................................................... 43 4.2 Solar cooling systems ................................................................................................. 45 4.3 Solar combi+ systems................................................................................................. 47 5 METHODOLOGICAL APPROACH ................................................................................. 53 5.1 Climatic and topographic data ................................................................................... 54 5.2 Buildings and loads ..................................................................................................... 56 5.2.1 Buildings description............................................................................................ 56 5.2.2 Assumptions made .............................................................................................. 57 5.2.3 DWH load .............................................................................................................. 58 5.3 System description ...................................................................................................... 59 5.3.1 Reference - Conventional system ..................................................................... 59 5.3.2 Solar combi+ system........................................................................................... 60 5.4 Simulation scenarios ................................................................................................... 63 5.4.1 Simulation scenario 1 - Common building, default system adjustment ....... 64 5.4.2 Simulation scenario 2 - Common building, system adjustment based on heating operation ............................................................................................................. 64 5.4.3 Simulation scenario 3 - Minergie building, system adjustment based on heating operation ............................................................................................................. 65 6 RESULTS............................................................................................................................. 67 6.1 Primary energy savings .............................................................................................. 67 6.2 Solar fraction................................................................................................................. 73 viii 7 FEASIBILITY ANALYSIS.................................................................................................. 79 7.1 Financial data used ..................................................................................................... 79 7.2 Results of the feasibility analysis .............................................................................. 80 8 PARAMETRIC ANALYSIS................................................................................................ 87 8.1 System cost reduction................................................................................................. 87 8.2 Conventional energy price increase ......................................................................... 91 8.3 Combined effect of the parameters considered...................................................... 94 9 CONCLUSIONS.................................................................................................................. 99 BIBLIOGRAPHY.................................................................................................................... 103
en
heal.advisorName
Papadopoulos, Agis
en
heal.committeeMemberName
Papadopoulos, Agis
en
heal.committeeMemberName
Giannakidis
en
heal.committeeMemberName
Martinopoulos
en
heal.academicPublisher
School of Science &Technology, Master of Science (MSc) in Energy Systems
en
heal.academicPublisherID
ihu
heal.numberOfPages
124
heal.fullTextAvailability
true


This item appears in the following Collection(s)

Show simple item record

Related Items