GR Semicolon EN

Show simple item record

dc.contributor.author
Zandes, Thomas
en
dc.date.accessioned
2015-06-18T11:10:07Z
dc.date.available
2015-09-27T05:56:59Z
dc.date.issued
2015-06-18
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/417
dc.rights
Default License
dc.title
The role of thermal mass materials in net-zero energy buildings
en
heal.type
masterThesis
heal.keyword
Architecture and energy conservation
en
heal.keyword
Buildings--Energy conservation
en
heal.keyword
Buildings--Environmental aspects
en
heal.keyword
Buildings--Environmental engineering
en
heal.keyword
Sustainable construction
en
heal.keyword
Sustainable buildings
en
heal.keyword
Dissertations, Academic
en
heal.language
en
heal.access
free
el
heal.license
http://creativecommons.org/licenses/by-nc/4.0
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
heal.publicationDate
2013-12
heal.bibliographicCitation
Zandes, Thomas, 2013, The role of thermal mass materials in net zero energy buildings ,Master's Dissertation, International HellenicUniversity
en
heal.abstract
According to the recast of the European Performance of Buildings Directive (EPBD) all new buildings that will be built from 2021 and on, should be nearly zero energy buildings. The majority of buildings in Greece are heavyweight constructions that contain high amount of thermal mass. The relation and the integration of thermal mass materials with the entire NZEB performance were investigated in this dissertation. The first part of this dissertation presents a comparative evaluation and selection of thermal mass materials for periodic energy storage in buildings. A selection of materials using a selection strategy which includes a filtering process was implemented. During the selection process 127 different materials both conventional and unconventional were checked. An attempt to discover new alternative materials suitable for effective thermal energy storage was also made. Three materials stood out through the filtering process. Limestone, lightweight concrete and autoclaved aerated concrete. In the second part of the dissertation a dynamic thermal simulation of the selected materials the climatic conditions of the four climatic zones of Greece, was implemented. The thermal performance of walls constructed from the above materials was compared with the performance of common brick walls. Finally, the use of thermal mass for energy storage in order to overcome the mismatch barrier between supply and demand in a NZEB by implementing a simple pre-cooling strategy during the summer months was also investigated.
en
heal.tableOfContents
ABSTRACT .................................................................................................................... 3 1 INTRODUCTION ...................................................................................................... 6 1.1 SUSTAINABILITY AND THE BUILDING SECTOR ............................................................. 6 1.2 NET ZERO ENERGY BUILDINGS .................................................................................. 6 1.3 MISMATCH BETWEEN PRODUCTION AND DEMAND IN NZEB .................................... 11 1.4 SUBJECT OF THE THESIS .......................................................................................... 13 1.5 STRUCTURE OF THE THESIS ..................................................................................... 13 2 LITERATURE REVIEW ........................................................................................ 15 2.1 THERMAL ENERGY STORAGE IN BUILDING STRUCTURE ................................... 15 2.2 MATERIALS FOR THERMAL ENERGY STORAGE ................................................. 18 3 MATERIALS FOR ENERGY STORAGE IN BUILDINGS .............................. 21 3.1 THERMAL ENERGY STORAGE .......................................................................... 21 3.1.1 Sensible heat storage ....................................................................... 22 3.1.2 Latent heat storage ........................................................................... 23 3.1.3 Thermo-chemical heat storage ....................................................... 24 3.2 PERIODIC THERMAL ENERGY STORAGE IN BUILDINGS ..................................... 25 3.3 PROPERTIES OF THERMAL MASS MATERIALS FOR PERIODIC THERMAL ENERGY STORAGE ......................................................................................................................... 28 3.3.1 Storage capacity ................................................................................ 28 3.3.2 Thermal diffusivity and effusivity ..................................................... 30 3.3.3 Time lag .............................................................................................. 32 3.3.4 Optimal thickness .............................................................................. 34 3.3.5 Emissivity and thermal expansion coefficient ............................... 37 3.3.6 Mechanical behaviour....................................................................... 39 3.3.7 Embodied energy and CO2 footprint............................................... 41 4 SELECTION OF THERMAL MASS MATERIALS ........................................... 44 4.1 SELECTION STRATEGY ..................................................................................... 44 4.2 MAXIMUM THERMAL ENERGY STORAGE ........................................................... 46 4.3 MINIMIZATION OF EMBODIED ENERGY .............................................................. 48 -5- 4.4 MINIMIZATION OF COST .................................................................................... 50 4.5 FINAL SELECTION ............................................................................................. 53 5 SIMULATED DYNAMIC THERMAL BEHAVIOUR OF A TEST CELL MODEL .......................................................................................................................... 56 5.1 SIMULATION METHODOLOGY ............................................................................ 56 5.1.1 Model description .............................................................................. 57 5.1.2 Fixed parameters .............................................................................. 58 5.1.3 Properties of construction elements ............................................... 60 5.1.4 Internal thermal mass ....................................................................... 61 5.1.5 Simple pre-cooling ............................................................................ 61 5.2 SIMULATION RESULTS ...................................................................................... 63 5.2.1 Case 1: Comparison of brick wall with walls made of the selected thermal mass materials ................................................................ 63 5.2.2 Case 2 - Internal mass addition ...................................................... 64 5.2.3 Case 3 - Pre-cooling during summer months ............................... 65 5.3 DISCUSSION OF SIMULATION RESULTS ............................................................ 66 6 CONCLUSIONS AND PERSPECTIVES ........................................................... 74 6.1 CONCLUSIONS REGARDING THERMAL MASS MATERIALS SELECTION .............. 74 6.2 CONCLUSIONS FROM THE SIMULATION TESTS ................................................. 74 7 REFERENCES ....................................................................................................... 77
en
heal.advisorName
Anastaselos, Dr. D.
en
heal.committeeMemberName
Dr. Anastaselos
en
heal.committeeMemberName
Prof. Papadopoulos
en
heal.committeeMemberName
Dr. Martinopoulos
en
heal.academicPublisher
School of Science &Technology, Master of Science (MSc) in Energy Systems
en
heal.academicPublisherID
ihu
heal.numberOfPages
81
heal.fullTextAvailability
true


This item appears in the following Collection(s)

Show simple item record

Related Items