dc.contributor.author
Sioumis, Constantinos
en
dc.date.accessioned
2015-06-18T12:20:07Z
dc.date.available
2015-09-27T05:56:35Z
dc.date.issued
2015-06-18
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/427
dc.rights
Default License
dc.title
Numerical modeling of a
hybrid parabolic trough
Concentrating Solar Power Plant
en
heal.license
http://creativecommons.org/licenses/by-nc/4.0
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
heal.publicationDate
2013-02
heal.bibliographicCitation
Constantinos Sioumis, 2013, Numerical modeling of a
hybrid parabolic trough
Concentrating Solar Power Plant, Master's Dissertation,International Hellenic University
en
heal.abstract
This dissertation was written as a part of the MSc in Energy Systems at the International
Hellenic University. Its scope is to review researching efforts in the field of Concentrating
Solar Power Plants (CSPP) modeling and to apply appropriately wellestablished
related modeling principles into a 20 MW hybrid parabolic trough CSPP.
For this reason the introductory section documents the importance of appropriate
modeling of CSPP by examining the ground of RES promotion, distinguishing the prospects
of CSPPs and illustrating the parties that would be interested in such a research.
This document goes on with the review of 3 major dilemmas faced by someone who
aims at estimating the production of a CSPP: a) acknowledgment of uncertainty inherent
in these systems, b) building a custom-made model to evaluate the appropriateness
of available modeling tools and c) using commercial integrated CSPP modeling software.
Information provided in that section is being matched with illustrated needs, restrictions
and specificities related to input data required in the modeling process of a
hybrid parabolic trough CSPP with thermal storage. This correlation made the use of
System Advisor Model seem as the most appropriate tool in order that a 20 MW plant to
be modeled. Parametric, statistical and financial analysis is also performed supporting
the exportation of useful conclusions.
Although simulating the operation of a CSPP is a highly demanding process requiring
extensive knowledge of several scientific fields (physics, mathematics, electrical
and mechanical engineering, informatics), sincere support and scientific guidance provided
by Dr. George Giannakides have been proven to be enough for the successful
completion of this study. Acknowledging his contribution and deeply thanking him for
this is the least that I could do.
en
heal.tableOfContents
ABSTRACT ............................................................................................................. III
CONTENTS .............................................................................................................. IV
LIST OF FIGURES ................................................................................................ VII
1 INTRODUCTION.................................................................................................. 1
1.1 THE NEED FOR LOW CO2 EMISSIONS .............................................................. 1
1.2 THE ROLE OF CSP IN LESS CO2 .................................................................... 4
1.3 CSP AS A MEANS OF SAVING COSTS .............................................................. 6
1.4 CSP PLANTS: UNDER RESEARCH AND DEVELOPMENT .................................. 11
1.5 ESTIMATING ELECTRICITY GENERATION: A KEY FACTOR ............................... 13
1.6 THE THESIS IN A NUTSHELL ......................................................................... 15
2 MODELING CSP PLANTS ............................................................................... 17
2.1 INTRODUCTION ............................................................................................. 17
2.2 CERTAINTY VS PROBABILITY ........................................................................ 17
2.2.1 Deterministic Models ..................................................................... 18
2.2.2 Probabilistic Models ....................................................................... 18
2.3 MODELING TOOLS ........................................................................................ 20
2.3.1 Fortran ............................................................................................ 20
2.3.2 Mathematica ................................................................................... 21
2.3.3 MATLAB ......................................................................................... 21
2.3.4 Spreadsheets ................................................................................. 22
2.3.5 Other Modeling Tools .................................................................... 23
2.4 INTEGRATED CSP PLANT MODELS .............................................................. 24
2.4.1 RETScreen ..................................................................................... 25
2.4.2 TRNSYS ......................................................................................... 29
2.4.3 System Advisor Model ................................................................... 32
2.4.4 Other Integrated CSPP Models .................................................... 36
3 CHALLENGES ON MODELING A PARABOLIC TROUGH CSP PLANT . 39
3.1 INTRODUCTION ............................................................................................. 393.2 INSTALLATION SITE ...................................................................................... 41
3.2.1 Sun Relative Position .................................................................... 41
3.2.2 Atmospheric Attenuation ............................................................... 41
3.2.3 External Shading ........................................................................... 42
3.3 CLIMATE....................................................................................................... 42
3.3.1 Solar Data ....................................................................................... 43
3.3.2 Non-solar Data ............................................................................... 43
3.4 SOLAR FIELD ............................................................................................... 43
3.4.1 Lay-out ............................................................................................ 44
3.4.2 Solar Collector Assemblies ........................................................... 44
3.4.3 Heat Collection Element................................................................ 46
3.4.4 Heat Transfer Fluid ........................................................................ 47
3.5 POWER CYCLE ............................................................................................. 48
3.5.1 Fossil Fuel-fired Boiler .................................................................. 49
3.5.2 Steam Generator – Feedwater Heaters ...................................... 50
3.5.3 Steam Turbines - Electricity Generator ....................................... 50
3.5.4 Condenser ...................................................................................... 50
3.6 THERMAL ENERGY STORAGE SYSTEM ......................................................... 51
3.7 PIPING SYSTEM............................................................................................ 51
3.7.1 Tubular Components ..................................................................... 52
3.7.2 Non-tubular Components .............................................................. 52
3.8 COMMENTS .................................................................................................. 52
4 A 20 MW CSPP MODEL .................................................................................. 53
4.1 INTRODUCTION ............................................................................................. 53
4.2 THE OBJECTIVES ......................................................................................... 54
4.3 INITIAL SETUP .............................................................................................. 54
4.3.1 Climate ............................................................................................ 55
4.3.2 Annual Performance ...................................................................... 57
4.3.3 Solar Field ...................................................................................... 58
4.3.4 Collectors ........................................................................................ 64
4.3.5 Receivers ........................................................................................ 65
4.3.6 Power Cycle ................................................................................... 66
4.3.7 Thermal Storage ............................................................................ 704.3.8 Parasitics ........................................................................................ 73
4.4 DETERMINISTIC MODELING .......................................................................... 74
4.4.1 Alternative Locations ..................................................................... 74
4.4.2 Output of the Initial Setup ............................................................. 75
4.4.3 Parametric Analysis ....................................................................... 77
4.5 PROBABILISTIC MODELING ........................................................................... 82
4.6 FINANCIAL MODELING .................................................................................. 85
4.6.1 Trough System Costs .................................................................... 85
4.6.2 Financing ........................................................................................ 86
4.6.3 Tax Credit and Payment Incentives ............................................. 88
4.6.4 Sizing the Solar Field .................................................................... 88
4.6.5 Technical Optimization .................................................................. 90
4.6.6 Feasibility Analysis ........................................................................ 91
5 CONCLUSIONS ................................................................................................. 99
BIBLIOGRAPHY ................................................................................................... 101
en
heal.advisorName
Giannakidis, Dr. George
en
heal.committeeMemberName
Prof. Papadopoulos
en
heal.committeeMemberName
Dr. Giannakidis
en
heal.committeeMemberName
Dr. Martinopoulos
en
heal.academicPublisher
School of Science &Technology, Master of Science (MSc) in Energy Systems
en
heal.academicPublisherID
ihu
heal.fullTextAvailability
true