GR Semicolon EN

Show simple item record

dc.contributor.author
Sioumis, Constantinos
en
dc.date.accessioned
2015-06-18T12:20:07Z
dc.date.available
2015-09-27T05:56:35Z
dc.date.issued
2015-06-18
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/427
dc.rights
Default License
dc.title
Numerical modeling of a hybrid parabolic trough Concentrating Solar Power Plant
en
heal.type
masterThesis
heal.language
en
heal.access
free
el
heal.license
http://creativecommons.org/licenses/by-nc/4.0
heal.recordProvider
School of Science and Technology, MSc in Energy Systems
heal.publicationDate
2013-02
heal.bibliographicCitation
Constantinos Sioumis, 2013, Numerical modeling of a hybrid parabolic trough Concentrating Solar Power Plant, Master's Dissertation,International Hellenic University
en
heal.abstract
This dissertation was written as a part of the MSc in Energy Systems at the International Hellenic University. Its scope is to review researching efforts in the field of Concentrating Solar Power Plants (CSPP) modeling and to apply appropriately wellestablished related modeling principles into a 20 MW hybrid parabolic trough CSPP. For this reason the introductory section documents the importance of appropriate modeling of CSPP by examining the ground of RES promotion, distinguishing the prospects of CSPPs and illustrating the parties that would be interested in such a research. This document goes on with the review of 3 major dilemmas faced by someone who aims at estimating the production of a CSPP: a) acknowledgment of uncertainty inherent in these systems, b) building a custom-made model to evaluate the appropriateness of available modeling tools and c) using commercial integrated CSPP modeling software. Information provided in that section is being matched with illustrated needs, restrictions and specificities related to input data required in the modeling process of a hybrid parabolic trough CSPP with thermal storage. This correlation made the use of System Advisor Model seem as the most appropriate tool in order that a 20 MW plant to be modeled. Parametric, statistical and financial analysis is also performed supporting the exportation of useful conclusions. Although simulating the operation of a CSPP is a highly demanding process requiring extensive knowledge of several scientific fields (physics, mathematics, electrical and mechanical engineering, informatics), sincere support and scientific guidance provided by Dr. George Giannakides have been proven to be enough for the successful completion of this study. Acknowledging his contribution and deeply thanking him for this is the least that I could do.
en
heal.tableOfContents
ABSTRACT ............................................................................................................. III CONTENTS .............................................................................................................. IV LIST OF FIGURES ................................................................................................ VII 1 INTRODUCTION.................................................................................................. 1 1.1 THE NEED FOR LOW CO2 EMISSIONS .............................................................. 1 1.2 THE ROLE OF CSP IN LESS CO2 .................................................................... 4 1.3 CSP AS A MEANS OF SAVING COSTS .............................................................. 6 1.4 CSP PLANTS: UNDER RESEARCH AND DEVELOPMENT .................................. 11 1.5 ESTIMATING ELECTRICITY GENERATION: A KEY FACTOR ............................... 13 1.6 THE THESIS IN A NUTSHELL ......................................................................... 15 2 MODELING CSP PLANTS ............................................................................... 17 2.1 INTRODUCTION ............................................................................................. 17 2.2 CERTAINTY VS PROBABILITY ........................................................................ 17 2.2.1 Deterministic Models ..................................................................... 18 2.2.2 Probabilistic Models ....................................................................... 18 2.3 MODELING TOOLS ........................................................................................ 20 2.3.1 Fortran ............................................................................................ 20 2.3.2 Mathematica ................................................................................... 21 2.3.3 MATLAB ......................................................................................... 21 2.3.4 Spreadsheets ................................................................................. 22 2.3.5 Other Modeling Tools .................................................................... 23 2.4 INTEGRATED CSP PLANT MODELS .............................................................. 24 2.4.1 RETScreen ..................................................................................... 25 2.4.2 TRNSYS ......................................................................................... 29 2.4.3 System Advisor Model ................................................................... 32 2.4.4 Other Integrated CSPP Models .................................................... 36 3 CHALLENGES ON MODELING A PARABOLIC TROUGH CSP PLANT . 39 3.1 INTRODUCTION ............................................................................................. 393.2 INSTALLATION SITE ...................................................................................... 41 3.2.1 Sun Relative Position .................................................................... 41 3.2.2 Atmospheric Attenuation ............................................................... 41 3.2.3 External Shading ........................................................................... 42 3.3 CLIMATE....................................................................................................... 42 3.3.1 Solar Data ....................................................................................... 43 3.3.2 Non-solar Data ............................................................................... 43 3.4 SOLAR FIELD ............................................................................................... 43 3.4.1 Lay-out ............................................................................................ 44 3.4.2 Solar Collector Assemblies ........................................................... 44 3.4.3 Heat Collection Element................................................................ 46 3.4.4 Heat Transfer Fluid ........................................................................ 47 3.5 POWER CYCLE ............................................................................................. 48 3.5.1 Fossil Fuel-fired Boiler .................................................................. 49 3.5.2 Steam Generator – Feedwater Heaters ...................................... 50 3.5.3 Steam Turbines - Electricity Generator ....................................... 50 3.5.4 Condenser ...................................................................................... 50 3.6 THERMAL ENERGY STORAGE SYSTEM ......................................................... 51 3.7 PIPING SYSTEM............................................................................................ 51 3.7.1 Tubular Components ..................................................................... 52 3.7.2 Non-tubular Components .............................................................. 52 3.8 COMMENTS .................................................................................................. 52 4 A 20 MW CSPP MODEL .................................................................................. 53 4.1 INTRODUCTION ............................................................................................. 53 4.2 THE OBJECTIVES ......................................................................................... 54 4.3 INITIAL SETUP .............................................................................................. 54 4.3.1 Climate ............................................................................................ 55 4.3.2 Annual Performance ...................................................................... 57 4.3.3 Solar Field ...................................................................................... 58 4.3.4 Collectors ........................................................................................ 64 4.3.5 Receivers ........................................................................................ 65 4.3.6 Power Cycle ................................................................................... 66 4.3.7 Thermal Storage ............................................................................ 704.3.8 Parasitics ........................................................................................ 73 4.4 DETERMINISTIC MODELING .......................................................................... 74 4.4.1 Alternative Locations ..................................................................... 74 4.4.2 Output of the Initial Setup ............................................................. 75 4.4.3 Parametric Analysis ....................................................................... 77 4.5 PROBABILISTIC MODELING ........................................................................... 82 4.6 FINANCIAL MODELING .................................................................................. 85 4.6.1 Trough System Costs .................................................................... 85 4.6.2 Financing ........................................................................................ 86 4.6.3 Tax Credit and Payment Incentives ............................................. 88 4.6.4 Sizing the Solar Field .................................................................... 88 4.6.5 Technical Optimization .................................................................. 90 4.6.6 Feasibility Analysis ........................................................................ 91 5 CONCLUSIONS ................................................................................................. 99 BIBLIOGRAPHY ................................................................................................... 101
en
heal.advisorName
Giannakidis, Dr. George
en
heal.committeeMemberName
Prof. Papadopoulos
en
heal.committeeMemberName
Dr. Giannakidis
en
heal.committeeMemberName
Dr. Martinopoulos
en
heal.academicPublisher
School of Science &Technology, Master of Science (MSc) in Energy Systems
en
heal.academicPublisherID
ihu
heal.numberOfPages
128
heal.fullTextAvailability
true


This item appears in the following Collection(s)

Show simple item record

Related Items