GR Semicolon EN

Show simple item record

dc.contributor.author
Minopoulos, Georgios
en
dc.date.accessioned
2015-06-23T14:08:50Z
dc.date.available
2015-09-27T05:58:30Z
dc.date.issued
2015-06-23
dc.identifier.uri
https://repository.ihu.edu.gr//xmlui/handle/11544/497
dc.rights
Default License
dc.title
Sensor placement for testing underwater sensor networks
en
heal.type
masterThesis
heal.keyword
Underwater acoustic telemetry
en
heal.keyword
Wireless sensor networks
en
heal.keyword
Computer networks--Environmental aspects
en
heal.keyword
Telecommunication--Energy conservation
en
heal.keyword
Sustainable engineering
en
heal.keyword
Green technology
en
heal.keyword
Computer networks--Energy conservation
en
heal.keyword
Telecommunication--Environmental aspects
en
heal.keyword
Dissertations, Academic
en
heal.language
en
heal.access
free
el
heal.license
http://creativecommons.org/licenses/by-nc/4.0
heal.recordProvider
School of Science and Technology, MSc in Information & Communication Technology Systems
heal.publicationDate
2013-12
heal.bibliographicCitation
Minopoulos Georgios, 2013, Sensor placement for testing underwater sensor networks ,Master's Dissertation, International Hellenic University
en
heal.abstract
This dissertation was written as a part of the MSc in ICT Systems at the International Hellenic University. Nowadays, scientists are looking for ways to replace old technologies with new, “green” and more energy efficient than the previous ones. Underwater acoustic sensor networks aim to this direction. It is one very prominent technology which is expected to be implemented to much more applications than today. In this thesis we examine the optimal sensor deployment taking into account all these constrains which such a system have to face. We propose a sensor deployment which leads to maximize the lifetime of the network. Simulations are conducted using an ns-3 simulator and the results show that our deployment prolongs the lifetime of the network significantly. During all this tough period there are several people who contributed to accomplish this dissertation. It would not have been possible to write this thesis without their help and support. I would like to express my deepest gratitude to my advisor, Dr. Nick Savage, who has opened a new door for me to get involved with one very promising technology. His excellent guidance, caring and patience are factors that led to a successful result. I am also indebted to the academic staff of the University and especially to Dr. Georgios Koutitas for his advices and instructions to write a coherent and compre-hensive dissertation. He offered plenty of time to me during the research and he had al-ways solutions to my problems. I would also like to thank the PhD student, Kyriakos Ovaliadis, for his interest on my research. He was always willing to give his best suggestions and to provide me the necessary tools. I consider him a friend and I appreciate what he has done for me. Of course, my family deserves many thanks for their love and support they have shown to me while I was writing this dissertation. When I needed them, they were there for me.
en
heal.tableOfContents
ABSTRACT .................................................................................................................... 3 CONTENTS .................................................................................................................... 4 1 INTRODUCTION ...................................................................................................... 6 2 “GREEN” COMMUNICATIONS AND SENSOR NETWORKS ..................... 10 2.1 ENVIRONMENTAL IMPACTS .............................................................................. 10 2.2 GREEN NETWORKING ...................................................................................... 11 2.3 SENSOR NETWORKS ........................................................................................ 12 2.3.1 Applications ........................................................................................ 13 2.3.2 Underwater Applications .................................................................. 14 3 ISSUES OF SENSOR NETWORKS ................................................................... 15 3.1 COMMUNICATION STRUCTURE ........................................................................ 15 3.2 PROTOCOLS ..................................................................................................... 16 3.2.1 Medium Access Control Protocols – Link Layer........................... 16 3.2.2 Routing Protocols – Network Layer ................................................ 21 3.2.3 Transport Protocols – Transport Layer .......................................... 25 3.2.4 Common Used Protocols ................................................................. 29 3.3 TOPOLOGIES .................................................................................................... 30 3.3.1 Peer-to-Peer (or Point-to-Point) ...................................................... 30 3.3.2 Star ...................................................................................................... 31 3.3.3 Tree ..................................................................................................... 32 3.3.4 Mesh .................................................................................................... 32 3.4 CLUSTERING .................................................................................................... 33 3.4.1 Organizational Structure .................................................................. 33 3.4.2 Limitations .......................................................................................... 34 3.4.3 Design Goals ..................................................................................... 35 3.4.4 Popular Clustering Algorithms......................................................... 37 5 4 UNDERWATER PERSPECTIVE OF SENSOR NETWORKS ....................... 38 4.1 CHALLENGES OF UNDERWATER SENSOR NETWORKS ................................... 38 4.1.1 Differences with Terrestrial Sensor Networks .............................. 38 4.1.2 Channel Variation in the Sea........................................................... 39 4.1.3 Basics of Acoustic Propagation ...................................................... 41 4.1.4 Empirical Channel Models ............................................................... 42 4.2 UNDERWATER TOPOLOGY ............................................................................... 49 4.3 DYNAMIC CLUSTERING .................................................................................... 52 4.4 UNDERWATER PROTOCOLS ............................................................................. 52 4.4.1 Medium Access Control Protocols ................................................. 52 4.4.2 Routing Protocols .............................................................................. 53 4.4.3 Transport Protocols........................................................................... 54 5 DESCRIPTION OF SIMULATOR ........................................................................ 56 5.1 SIMULATIONS NECESSITY ................................................................................ 56 5.2 TYPES OF SIMULATIONS .................................................................................. 56 5.2.1 Discrete-Event Simulation ............................................................... 56 5.2.2 Trace-Driven Simulation................................................................... 57 5.3 USNET SIMULATOR INTERFACE ..................................................................... 57 5.4 ALGORITHMS USED .......................................................................................... 61 5.4.1 Main Procedure ................................................................................. 61 5.4.2 Clustering Procedure ........................................................................ 62 5.4.3 Communication Procedure .............................................................. 62 6 SIMULATION RESULTS ...................................................................................... 63 6.1 SIMULATION SCENARIOS ................................................................................. 63 6.2 RESULT ANALYSIS ........................................................................................... 64 7 CONCLUSIONS ..................................................................................................... 68 BIBLIOGRAPHY .......................................................................................................... 69
en
heal.advisorName
Savage, Prof. Nick
en
heal.committeeMemberName
Savage, N.
en
heal.committeeMemberName
Papadopouli, Assoc. Prof. M.
en
heal.committeeMemberName
Koutitas, G.
en
heal.academicPublisher
School of Science &Technology, Master of Science (MSc) in Information and Communication Systems
en
heal.academicPublisherID
ihu
heal.numberOfPages
78
heal.fullTextAvailability
true


This item appears in the following Collection(s)

Show simple item record

Related Items